Soft_Job 板


LINE

各位好 小弟目前的工作是後端Web仔寫寫API 後來業務上有接觸到mapreduce Apache Flink 這種大數據運算框架 想請教一下各位前輩 如果為了下一份工作打算 會用這些框架 是有辦法往資料工程師當下一份工作嗎? 或者是說需要補足的知識工具其實更多? 靠刷題之後找Backend Engineer比較容易? 謝謝各位 --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.243.30.197 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Soft_Job/M.1681072593.A.FEC.html
1F:推 ripple0129: Chatgpt問世後未來說不準了04/10 06:13
2F:推 kimoji: 很多資料工程都要值班維運喔04/10 08:35
3F:→ gpctv: ETL很可怕04/10 08:55
4F:推 BigCockman: 身兼backend和data 老闆最愛04/10 09:49
5F:推 hsuchengmath: 要轉data eng ,看他的JD啊,或是去linkedin敲data04/10 12:24
6F:→ hsuchengmath: eng 然後問04/10 12:24
7F:推 acgotaku: 這些都是高級excel 只是工具 沒啥優勢或門檻04/10 12:46
8F:推 acgotaku: AI 取代這種工具類的操作/分析者 是可預見的未來04/10 12:49
9F:推 samhsu: Data Engineer 炙手可熱,就算沒落也可以轉後端,沒道理04/10 12:56
10F:→ samhsu: 不選04/10 12:56
是怕資料工程這塊 是不是需要補很多東西 弄一弄反而沒刷題走後端高? 不然好像刷題走後端比較容易?
11F:→ alan5: 你可以試著取代看看啊 de的重點一直是人不是工具操作04/10 13:00
12F:→ acgotaku: 我沒有說取代de 是取代初級的分析操作者04/10 13:09
13F:→ acgotaku: 因為我認為原po敘述 離 de的能力需求還是差滿多04/10 13:12
14F:→ loadingN: 看你想清資料還是繼續當web仔04/10 13:39
15F:→ DrTech: 身為專業工程師,有時間可以拿實際證據與實作來說明吧。如04/10 13:39
16F:→ DrTech: 果DE可以被AI部分取代,真的歡迎拿實際例子來交流學習。04/10 13:39
17F:→ DrTech: 資料工程師養成,要實務一點,不要會一堆工具,然後什麼都04/10 13:48
18F:→ DrTech: 沒做過。舉例:有10億筆結構化資料,你要怎麼存與查詢,一04/10 13:48
19F:→ DrTech: 秒可以查到? 朝這種很實務的角度去學,才是正軌。沒環境04/10 13:48
20F:→ DrTech: 就自己造垃圾資料,架虛擬環境來玩。04/10 13:48
21F:→ DrTech: 只是用過工具,然後一遇到實際問題就掛,可能很難找類似工04/10 13:50
22F:→ DrTech: 作。 04/10 13:50
23F:推 Hsins: DE 在處理的主要業務不是分析操作,樓上 DrTech 說的才是 D04/10 14:36
24F:→ Hsins: E 在關心的,需要根據業務需求規劃資料生命周期內的資料儲04/10 14:36
25F:→ Hsins: 存方式跟型態,說是高級 Excel 工具是在哈囉……04/10 14:36
26F:推 abc65379: 看起來你想走運算平台而不是倉儲?04/10 15:00
對應該是資料工程那塊 倉儲應該算是資料分析? 可能比較像D大跟H大說這樣 因為我也是自己摸索來用 但說是高級EXCEL工具是有點怪 啦 這些框架大方向應該都算是強調大數據資料可以更快速的吧
27F:推 Sunal: 原來現在DE只是專注工具的使用?那被AI取代剛剛好04/10 16:00
28F:推 cmcer: 大家都預設AI不能解決實務的問題也是挺值得討論的點04/10 16:22
29F:→ alan5: 解決老闆不想用rdb想用mongo存結構化資料的問題04/10 17:15
30F:→ alan5: ai應該會叫我解決老闆04/10 17:15
31F:推 breccia: 說mapreduce Apache Flink是高級excel是在搞笑嗎= =?先搞04/10 17:30
32F:→ breccia: 清楚資料分析和data engineer的區別好嗎04/10 17:30
33F:推 TAKADO: 好的DE跟日本原裝壓縮機一樣十分稀少,要對domain 的深入04/10 19:45
34F:→ TAKADO: 理解跟大量的技術與經驗積累。遇過那種高手就知道,本來只04/10 19:45
35F:→ TAKADO: 能等都更炸掉重改的中古垃圾屋,都能給你翻成漂漂亮亮的北04/10 19:45
36F:→ TAKADO: 歐風溫馨文青宅。04/10 19:45
37F:推 kero961240: 想詢問哪裡可以學到相關知識04/10 20:47
※ 編輯: lin3835 (111.243.30.197 臺灣), 04/10/2023 22:34:30
38F:→ Hsins: 倉儲是資料工程喔,經典著作 The Data Warehouse Toolkit 04/10 22:58
39F:→ Hsins: 有時間可以慢慢翻一下。會說是高級 Excel 工具應該是指看到 04/10 22:58
40F:→ Hsins: MapReduce 的部分,但這種操作並不是只能用在分析上…… 04/10 22:58
哦哦 謝謝H大 我想了一下 現在業務上是用hadoop Flink這類的大數據框架 去應用 似乎好像比較偏向資料分析這塊不是資料工程? 聽起來只會應該這類框架還是需要補足很多相關知識才能走這條路? 那感覺是後端那種單純刷題會容易一些? 我目前是因為剛好接觸到 所以才想說有沒有走這條路的可能這樣 ※ 編輯: lin3835 (111.243.30.197 臺灣), 04/10/2023 23:11:48
41F:→ Hsins: 至於待遇跟薪水問題,去看 DrTech 寫過的某篇文吧,國家跟04/10 23:09
42F:→ Hsins: 產業的權重會比職稱和使用的技術要高,你說資料工程跟後端 04/10 23:10
43F:→ Hsins: 來比誰高,不提產業也無從比較起… 04/10 23:10
44F:→ Hsins: 框架的大方向未必是處理效率問題,有的是處理擴展性問題 04/10 23:13
45F:→ Hsins: Hadoop 生態系沒有偏向資料分析呀~ 至於 Flink 是是為了處 04/10 23:16
我感覺會用這個應該主要是想用分散式集群的功能運算吧 把那些資料套用個什麼規則 整 理出某個 人能參考依據 這樣聽一聽 跟我實際摸索 好像真的不是會用一點工具就能往這 行走 ※ 編輯: lin3835 (111.243.30.197 臺灣), 04/10/2023 23:25:55
46F:→ Hsins: 理一些需要實時計算的資料的,當大量資料實時產生的同時需 04/10 23:18
47F:→ Hsins: 要分析計算會用到,要看一下你現在的業務到底接觸的是哪一 04/10 23:19
※ 編輯: lin3835 (111.243.30.197 臺灣), 04/10/2023 23:27:12
48F:→ Hsins: 越接近用戶端使用的部分,相較是比較簡單的,上面 D 大提到 04/10 23:29
49F:→ Hsins: 的,是偏向於提供資料使用人員(DS/DA)去做的 infra 04/10 23:30
50F:→ Hsins: 多數 DE 會在串接跟維護 Data Pipeline,你說的套用某個規 04/10 23:34
51F:→ Hsins: 則去整理出某人或是某個部門的資料,可能只是這條 pipeline 04/10 23:34
52F:→ Hsins: 上,某一個資料出水口需要做的事~ 要挖的東西是滿多的,有 04/10 23:35
53F:→ Hsins: 興趣可以從這個方向開始切進來~ 04/10 23:35
54F:→ Hsins: 的確在有些公司 DE 除了基礎服務設施和資料處理之外,還要 04/10 23:37
55F:→ luce: 現在有人在用mapreduce? 我還真的沒在商業產品上看到過 04/10 23:38
56F:→ Hsins: 包山包海去處理分析和視覺化… 04/10 23:38
57F:→ alihue: 公司資料量夠大都要靠 map reduce 來做分散式處理吧…幾 04/10 23:42
58F:→ alihue: 億筆資料的 indexing 難到你要一台機器做 04/10 23:42
59F:→ alihue: 還有大量 log 的 data pipeline,use case 很多 04/10 23:43
60F:→ Hsins: 還有不少用 Hive 的,背後做還是 MapReduce,現在的確 Spar 04/10 23:54
61F:→ Hsins: k 跟 Flink 居多 04/10 23:54
62F:→ alan5: 只是比較沒有純寫mapreduce 框架背後還是mr啊 04/11 12:17
63F:→ alan5: de會去服務使用flink分析的user de就要了解flink 04/11 12:19
64F:推 ab07275566: DE 是個坑,每家DE 要的技能點可能都有點些許不同,進 04/12 09:44
65F:→ ab07275566: 來會發現包山包海,什麼能力都要,可以多看看,再看要 04/12 09:44
66F:→ ab07275566: 不要走 DE 04/12 09:44
67F:推 weinine32: mapreduce早被淘汰了,居然還有人在用Zzzz 04/12 10:00
68F:推 daydream772: 分散式運算被後概念就是mr啊,還是你以為跑spark就 04/12 14:54
69F:→ daydream772: 不是MR 04/12 14:54
70F:→ weinine32: 那你應該先學Java,順便把原始碼、論文看一看,加油 Zz 04/12 18:18
71F:→ weinine32: zz 04/12 18:18







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BuyTogether站內搜尋

TOP