Soft_Job 板


LINE

上次發文後,有些版友寄信問了些問題 大多數問題是重複的,所以就再分享一下好了 不過在講之前要先說,我本身並沒有非常的資深 講的不一定是對的,主要都還是我個人工作上主觀的感受 1. 做AI相關數學一定要很好嗎? 數學好不好很難定義,但是以工作上來說 會需要的能力是:把數學公式轉成程式碼的能力 你不需要像論文一樣,完全理解證明的過程,但是要有能力把它實做出來 比方說,像是SELU的證明過程長達80頁,有多少人能真的看懂? 可是工作上你只需要知道怎麼實做SELU出來就可以了 2. AI主要工作再幹嘛? 這個就看每個公司不同而有差,以我自己為例 一半的時間整理資料,一半時間調整模型架構與參數 資料會需要討論怎麼蒐集、如何標註、怎麼做正規化、如何做擴增...等等前置工作 往往資料準備的好,事情大概就結束一半了 有些特殊情況,像是無法標註或是資料極少 就需要用到像是unsupervised learning 或是 one-shot learning 技術 另一半的時間,會根據需求去調整架構以及調整參數 這就會仰賴你看的論文的廣度,從中挑選出適合或混用網路架構 至於調參就很吃經驗,除了參考論文的參數設置 自己做久了也會知道一些神奇的參數XD 而這往往也是新手跟老手的差距 3. 面試官會期望看到什麼? 我自己在面試人時,會用以下的評分機制,好讓我快速挑選要邀請的對象 相關學歷+1 發表相關論文+2 相關工作經驗+2 github有相關作品+2 kaggle比賽經驗+4 通常有4~5分我就會邀請來面試,當然這分數只是參考 並不一定每次都會這樣篩選,像是kaggle比賽有master,就不會去看其他條件 這邊提一下為什麼我很看重kaggle或是其他比賽的經驗 我自己在比kaggle時,往往會花很多的時間認識資料 對資料理解的好,才會做出合適的前處理與資料擴增 資料的形式也會影響到模型的架構 所以要看懂資料才能選出合適的架構 過程中,也會體驗到調參的各種痛苦與絕望 (? 而且比賽也很考驗有沒有好好避免模型overfitting 排行榜上就常常看到很多人在最後成績公布時大翻車 其實就是嚴重的overfitting kaggle 好好從頭到尾把解問題的流程都考驗了一輪 這對在解工作上的需求時,會十分的有幫助 以上大概就這些 相信最近有在找AI相關工作的應該會感覺到競爭非常的激烈 要從中脫穎而出並得到工作機會,多準備一些總是好的 如果有想到什麼就在補充 就這樣 --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.231.242.215 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Soft_Job/M.1604066252.A.33D.html
1F:推 wow56397849: 好文推推 10/31 07:39
2F:推 feiwens5566: 就不要碰到那種kaggle抄大神model再做ensemble的 10/31 13:05
如果只是抄別人的,是很難打進銀/金牌區的,畢竟又不是只有你會抄 再退一步說,沒有料的人面試時問細一點就破功了
3F:推 aidansky0989: 抄大師的沒毛病吧,誰不是一開始就抄,抄過來會用就 10/31 13:14
4F:→ aidansky0989: 行,看論文可能也是 10/31 13:14
5F:推 baby0326sky: 想請問如果是new grad的話一樣會看kaggle嗎? 10/31 13:18
如果一個人kaggle有master級,而學歷只有高中畢業 我一樣是會邀請來面試的
6F:→ followwar: Kaggle到底有什麼好玩的= =? 10/31 16:19
7F:→ followwar: Top Conf workshop有很多challenge不見人去刷 10/31 16:21
8F:→ followwar: COCO KITTI CITYSCAPE 之類的指標性benchmark等大家去 10/31 16:22
9F:推 followwar: 但不否認 Kaggle的確有很多好用的dataset存在 10/31 16:27
kaggle好不好玩並不是我的重點阿XD 重點是參賽過的人,多少會學到一些東西 就算沒得獎也沒關係,享受那個過程很重要 除了kaggle以外,以影像來說NTIRE比賽也是可以去試試的 ※ 編輯: johney719 (61.231.242.215 臺灣), 10/31/2020 16:44:11
10F:推 truehero: conf的吧challenge錢少或跟本沒有啊,還有要發小論文才 10/31 20:07
11F:→ truehero: 能入二階段 10/31 20:07
12F:→ truehero: 如果不是本來就想發論文的,對純玩家吸引力沒那麼夠 10/31 20:08







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BabyMother站內搜尋

TOP