作者Mistouko (Mistouko)
看板Math
標題[中學] 因式分解
時間Wed Jul 17 20:53:54 2024
請問大家:
-a^4(b-c)-b^4(c-a)-c^4(a-b)
=(a-b)(b-c)(c-a)(a^2+b^2+c^2+ab+bc+ca)
這個分解流程是怎麼做出來的呢?
請問是假設原式為a的多項式,
然後作f(b)=0,所以會有(a-b)的因式,
這樣的概念來處理嗎?
謝謝大家~
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 39.9.62.40 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1721220836.A.75C.html
※ 編輯: Mistouko (39.9.62.40 臺灣), 07/17/2024 21:02:57
1F:→ mantour : 原式=-ab(a^3-b^3) + c(a^4-b^4) - c^4(a-b) 07/17 21:26
2F:→ mantour : 這樣就有 a-b 的因式了 07/17 21:26
3F:推 shenando : 這種對稱的式子,因式的形式不難猜 07/20 00:31
4F:→ shenando : 所以甚至不用表成多項式的形式,可直接用除法暴力解 07/20 00:31
5F:推 pnicarevol : 當a=b時,可使原式為零,類似因式定理的概念可知其 07/23 21:32
6F:→ pnicarevol : 有因式(a-b);又因為是輪換式多項式,因此也必有因 07/23 21:32
7F:→ pnicarevol : 式(b-c),(c-a) 07/23 21:32
8F:→ Mistouko : 謝謝以上老師們的回覆:) 07/25 14:14