作者Vulpix (Sebastian)
看板Math
標題Re: [分析] 雙向遞迴數列的推導問題
時間Tue Sep 13 22:59:20 2022
這篇回應關於 pseudo inverse 的想法。
還是用這個舉例
: y_n - y_{n-1} = x_n
: y_n = y_{-∞} + (u*x)_n
: 或
: y_n = y_{∞} + [(u-1)*x]_n
: 在 y_{-∞} 存在的情況下,u 可以是脈波響應。
1 0 0 0 0
-1 1 0 0 0
0 -1 1 0 0
0 0 -1 1 0
0 0 0 -1 1
以上矩陣是差分算子的矩陣表示,然後我砍掉(truncate)了一些東西。
其偽反矩陣:
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
這個矩陣與 u* 的作用相似。
: 而在 y_{∞} 存在的情況下則換成可以拿 u-1 當作脈波響應。
-1 1 0 0
0 -1 1 0
0 0 -1 1
0 0 0 -1
以上矩陣也是差分算子的矩陣表示,然後我又砍了一些東西。
其偽反矩陣:
-1 -1 -1 -1
0 -1 -1 -1
0 0 -1 -1
0 0 0 -1
這次矩陣跟 (u-1)* 長得比較像了。
: 兩個脈波響應只差了 1(此為齊次解),都同樣能有作用,
: 即使 u*x 與 (u-1)*x 算出來不一樣,但只要存在,他們就的確都是特解。
: 是相應於不同邊界條件的特解。
: 而此時會受到初始條件影響的東西,是 y_{-∞} 和 y_{∞}。
: 也就是說,不同初始條件與特解(那個捲積)的計算過程無涉,
: 但是會改變齊次項。
砍矩陣的時候下刀的方式不同,其實就是在考慮不同的邊界條件。
第一個差分矩陣左上角是 1,代表在擴大矩陣的時候,y_n 最前面的那項要一直能算。
第二個差分矩陣右下角是 -1,代表最後項要一直存在。
這與我們的邊界條件概念上是相符的。
其實還有其他下刀的方式,出來的偽反矩陣我還沒想到解釋,就放生了。
至於一般的線性算子要怎麼算偽反矩陣我沒去研究,最近沒空。
但是數列到數列、函數到函數的這種,一定要考慮邊界行為。
跟提問「iD 是 Hermitian 算子嗎?」一樣要考慮邊界。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 163.13.112.58 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1663081163.A.9A2.html
※ 編輯: Vulpix (163.13.112.58 臺灣), 09/13/2022 23:32:14
1F:→ Vulpix : 總之我認為「偽解與捲積是一致的」這個猜想應該沒09/14 00:52
2F:→ Vulpix : 問題,只是前置條件要寫好。09/14 00:52
3F:→ Vulpix : 如果是在這個情況下,偽解的確是很特別的特解。但09/14 00:55
4F:→ Vulpix : 是「這個情況」其實是指著邊界條件在說的,此時特09/14 00:55
5F:→ Vulpix : 解就是唯一解,「特別」也就理直氣壯了。09/14 00:55
6F:推 znmkhxrw : 謝謝V大觀點, 這樣也是一個把線性方程與差分方程拉09/14 01:10
7F:→ znmkhxrw : 在一起的一種方式了~09/14 01:10
8F:推 znmkhxrw : 分享一下我前幾天卡住的觀點XD 我把線性方程Ax=b的09/14 01:16
9F:→ znmkhxrw : 那一個特別的特解定義成"Ax=b中的x與{Ax=0}垂直的x"09/14 01:16
10F:→ znmkhxrw : , 自然就獲得x是唯一解並且x=A^+b, 但是這個觀點需09/14 01:16
11F:→ znmkhxrw : 要內積空間, 這個限制在實或是複矩陣自然成立, 但是09/14 01:16
12F:→ znmkhxrw : 在實或是複差分方程我就不知道怎麼定義內積了...兩09/14 01:16
13F:→ znmkhxrw : 個解y1_n與y2_n的內積是...XD 放棄, 這個觀點可以09/14 01:16
14F:→ znmkhxrw : 給Ax=b那個特別的特解很好的刻劃, 可是無法延伸到差09/14 01:16
15F:→ znmkhxrw : 分方程QQ09/14 01:16
16F:→ Vulpix : 一個簡單的內積定義就是逐項積的和啊。不能算內積09/14 05:59
17F:→ Vulpix : 的數列就先排除掉,之後再說。09/14 05:59
18F:推 znmkhxrw : 了解~09/14 11:04
※ 編輯: Vulpix (163.13.18.218 臺灣), 09/14/2022 13:20:44
19F:→ Vulpix : 回頭一看,我選的都是方陣,還可逆XD 09/16 01:21
20F:推 znmkhxrw : 所以解空間變成唯一解XD 09/16 10:36
其他看起來比較合理的下刀方式:
-1 1 0 0 0
0 -1 1 0 0
0 0 -1 1 0
0 0 0 -1 1
偽反矩陣:
-0.8 -0.6 -0.4 -0.2
0.2 -0.6 -0.4 -0.2
0.2 0.4 -0.4 -0.2
0.2 0.4 0.6 -0.2
0.2 0.4 0.6 0.8
這個應該下不同的條件就可以讓他看起來收斂到適當的 u+c 上吧。
21F:→ recorriendo : Least-norm solution 09/16 18:35
※ 編輯: Vulpix (163.13.112.58 臺灣), 10/05/2022 02:45:37