Math 板


LINE

※ 引述《adamchi (adamchi)》之銘言: : 2.有900個實數,每個數的絕對值不超過2/3且它們的立方和是0, : 求它們和的最大值 : 答:200 這問題我還挺感興趣給中學生是怎麼做的。因為我用的手段不是中學生的範疇了 假設那900個實數為 X1, X2 ...... , X900 用 X = [X1, X2 ...... , X900] 來表示這900個數 900 定義 f(X) = ΣXi i=1 那我們想要做的問題就是 maximum f(X) subject to ΣXi^3 = 0 , Xi^2 - 4/9 <= 0 首先,X的 domain 是 closed and bounded, 所以X絕對存在極大值 接著,對於這個問題列出 KKT condition,可以得到,達成極大值的 X 必須滿足 Link:https://bit.ly/3n1tuya 存在 {λi | 1<=i<=900} 和 μ>= 0 使得 -1 + 2λiXi + 3μXi^2 = 0 for all i ....... (1) λi(Xi^2 - 4/9) = 0 for all i ....... (2) ΣXi^3 = 0 ........(3) 這些等式同時成立 (i) 如果 μ= 0 從 (1) 可得知 2λiXi = 1 → λi ≠ 0 而 λi ≠ 0 則可以從 (2) 得出 Xi 們要不是 2/3 就是 -2/3 那麼從 (3) 我們可以知道這情況下各自是 450 個,f(X) = 0 看得出來這並不是太有趣的結果 (ii) 假設 μ> 0 (這邊才會得到比較有趣的結果,但也比較長) 這次我們從 (2) 切入。對於任意 i in {1,2,3,...,900}, λi ≠ 0 → Xi = 2/3 or -2/3 那 λi = 0 呢? 這個就可以從 (1) 得到 Xi = 1/√(3μ) or -1/√(3μ) 這邊開始比較有趣囉 https://i.imgur.com/ot2Iyi8.png 如果我們令 α = 1/√(3μ), 那麼在 μ >0 的情況下, 滿足 KKT condition 的 Xi們的數值只能是 α,-α,2/3,-2/3 這個 α 本身要大於零,而且我們還可以進一步限制 α < 2/3。 為什麼呢? 因為如果 α = 2/3 ,就跟 (a) 的結果一樣了 假設這些 Xi中,有 a 個是 α b 個是 -α c 個是 2/3 d 個是 -2/3 這時候 f(X) = α(a-b) + 2/3*(c-d) ......(4) ΣXi^3 = α^3(a-b) +8/27*(c-d) = 0 ......(5) a+b+c+d = 900 ......(6) a,b,c,d are non-negative intergers (5)可以得到 2/3(c-d) = -α^3(a-b)*9/4 把這個結果帶入 (4) 可以得到 f(X) = (a-b)α(1-9/4α*2) .....(7) 到目前為止沒用到 (6) 的限制,這樣能弄出東西就見鬼了。 從(6)可以得到: 900 = a+b+c+d = (a-b) + 2b + (d-c) + 2c = (a-b) + 27/8*α^3*(a-b) + 2b+2c by (5) → (a-b)(1+27/8*α^3) = 900-2b-2c → (a-b) = 900-2b-2c / (1+27/8*α^3) ......(8) 將(8)帶入(7)可得到 f(X) = (900-2b-2c)*α(1-9/4α*2)/(1+27/8*α^3) ...... (9) 這裡呢,我們也不用考慮 900-2b-2c <= 0 的情況, 因為這還不如(i)看到的 f(X) 的情況 讓我們把(9)裡面 α 的部分拿出來看 α(1-9/4α*2)/(1+27/8*α^3) = α(1-3/2α)(1+3/2α)/[(1+3/2α)(1-3/2α+9/4α^2)] = α(1-3/2α)/(1-3/2α+9/4α^2) = -2/3 + 1/( 27/4*(α-1/3)^2 + 9/8 ) 上面這個α的部分,在 α = 1/3 的時候會有最大值 2/9 也就是說 f(X) = (900-2b-2c)*α(1-9/4α*2)/(1+27/8*α^3) <= (900-2b-2c)*2/9 <= 900 * 2/9 (畢竟 b,c 都要 >=0) = 200 我這樣在(ii)寫了一大串,到底寫了什麼?綜合起來就是在說, 在滿足 KKT condition (1)(2)(3) 且 μ> 0 的情況下, Xi們只能是 1/√(3μ),-1/√(3μ),2/3,-2/3 其中一種數值 而且 f(X) 不會超過 200 那f(X)到底有沒有可能在這種情況下達到 200? 有,就是 800 個 1/√(3μ) = 1/3 和 100 個 -2/3 所以這個問題的極大值就是 200 -- 角卷綿芽首次個人Live: Watame Night Fever!! in Zepp Tokyo https://pbs.twimg.com/media/E9PIgJ7VkAUExEa.jpg
入場時間:台灣時間 2021/10/12 (星期二) 下午 4:30 官網購票連結:https://watame1stlive.hololive.tv/tickets/ --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 98.45.135.233 (美國)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1634515284.A.599.html
1F:推 Starvilo : https://i.imgur.com/GcnEM6q.jpg 10/18 11:18
2F:→ Starvilo : 網路解法但看不懂如何想法。109學科能力中投題目 10/18 11:18
3F:推 LPH66 : 上面第二行少等號, 9x^3-3x+2/3"="(x+2/3)(3x-1)^2 10/18 12:49
4F:→ LPH66 : 然後我猜它的想法是設法湊出 ax^3+cx+d >= 0 10/18 12:50
以他的做法,是要湊出這個沒錯
5F:→ LPH66 : 這樣全部求和後就有立方和跟總和可以套關係 10/18 12:50
6F:→ LPH66 : 那至於為什麼要湊 (x+2/3)(x-1/3)(x-1/3) 就不知了 10/18 12:51
7F:→ LPH66 : 從形式上猜, 或許是從 x>-2/3 起, 設法消掉二次項 10/18 12:53
8F:→ LPH66 : 還要保持範圍內恆正 10/18 12:53
9F:推 Starvilo : 了解~ 10/18 12:55
10F:→ LPH66 : 再繼續猜下去的話, 前篇的設 -2/3 和 2p/3 可能也是 10/18 12:59
11F:→ LPH66 : 類似的推算 (用 2p/3 去解出那個 1/3 來) 10/18 12:59
那個做法問題在於他多用了一個 Xi必須要是 -2/3 和 2p/3 的條件, 但並沒有證明考慮這樣的Xi就足夠
12F:推 vectorlog : 總感覺柯西可以 10/18 14:48
※ 編輯: arrenwu (98.45.135.233 美國), 10/18/2021 18:21:55







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Tech_Job站內搜尋

TOP