Math 板


LINE

※ 引述《thumbg75446 (EDWIN)》之銘言: : 有八個人圍成一圈考試 : 這八個人可以轉頭看與自己相鄰的其中一個人的答案 : 轉左邊或右邊是等機率的 : 每個人的轉頭也不會影響到別人轉哪個方向 : 那麼沒有被人看的人的個數期望值是多少? : 想問這題要怎麼樣討論? : 感謝大大 → plyong95084 : 8*(1/2)^2=2 ? 09/24 22:31 推 LPH66 : 樓上正解, 每個人有 1/4 機率不被看 09/24 23:28 那如果是這樣,有(1/4)^8沒有人被看嗎? ※ 編輯: thumbg75446 (114.25.46.44 臺灣), 09/24/2021 23:43:29 推 LPH66 : 這就不對了, 因為各個 1/4 不是獨立 09/24 23:59 推 tuhunger : 回原po,乘8和8次方的差別 09/24 23:59 → LPH66 : 期望值的線性性質不需要獨立也能成立 09/24 23:59 那不是獨立不就代表每個人不被看的機率不是1/4嗎? ------------------------------------------------- 一樓正解,理由L大在推文也說了。 針對這個題目仔細下去算的話,也可以得到一樣的結論: 若8個人按照1-8的號碼坐一圈, 2號在1號右邊, 以此類推, 1號在8號右邊 先設 A_i = 1 , 若第i個人向右看 ; A_i=0, 若第i個人向左看 則 A_i = 1和A_i=0的機率都是 1/2, 且A_i 彼此都獨立 再設 B_i = 1, 若第i個人沒被看; B_i = 0, 若第i個人有被看 則 B_1 = 1 if A_2=1且A_8=0 ; 除此之外 B_1=0 B_8 = 1 if A_1=1且A7=0 ; 除此之外 B_8 = 0 i=2~7 時, B_i = 1 if A_(i+1)=1且A_(i-1)=0 ; 除此之外 B_i=0 或是可以寫成: B_1 = A_2 * (1-A_8) B_i = A_(i+1) * (1 - A_(i-1)) , i = 2 ~7 B_8 = A_1 * (1-A_7) 因為 A_8 跟 A_2 獨立, 所以 B_1 = 1 的機率 為 P(A_8=1)*P(A_2=0) = 1/4 同理, A_(i+1)跟A_(i-1)都獨立, 所以每個 B_i=1 的機率都是 1/4 B_i的期望值 E(B_i) = 1*1/4 + 0*3/4 = 1/4 很明顯 B_i 彼此不獨立, 所以 P(B1=1且B2=1) 不等於 P(B1=1)P(B2=1) 但是期望值不用獨立也可以相加, 所以 E(B1+B2+B3+...+B8) = E(B1) + ... + E(B8) = 1/4 * 8 = 2 --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.125.75 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1632557823.A.0CD.html ※ 編輯: mantour (140.112.125.75 臺灣), 09/25/2021 16:18:30
1F:推 thumbg75446 : 推推!感謝大大詳細講解! 09/25 22:45
2F:推 alan23273850: 讚讚讚 這篇不錯 09/27 17:32
3F:→ alan23273850: 如果能進一步解釋為什麼期望值不用獨立也可以相加 09/27 17:33
4F:→ alan23273850: 就更棒了呢! 09/27 17:33
以下同樣只針對這個題目討論,更嚴謹和一般性的證明留待大大分享 簡單把A1~A8的所有可能情況列出來 A1 A2 A3 A4 A5 A6 A7 A8 case 1 0 0 0 0 0 0 0 0 case 2 0 0 0 0 0 0 0 1 ... case 256 1 1 1 1 1 1 1 1 再把對應的 B1 ~ B8 , 和 B1~B8 的總和(=沒被看的人數) sumB 寫出來 B1 B2 B3 B4 B5 B6 B7 B8 sumB case 1 0 0 0 0 0 0 0 0 0 case 2 0 0 0 0 0 0 1 0 1 ... case 256 0 0 0 0 0 0 0 0 0 注意到 上表中每個直行的總和/256 分別就是Bi 和 sumB 的期望值 而每一橫列的sumB都是該列B1~B8的總和, 因此sumB這一行的總和其實會等於B1~B8行的行總和的總和 因此就得到sumB的期望值等於各個Bi的期望值的和 這裡只需要用到交換行列求和順序總和結果不變的性質 所以跟Bi彼此獨不獨立沒有關係 寫成算式: 令 Bij = case i 中 Bj 的值 sumBi = case i 中 sumB 的值 則 sumBi = sigma_(j=1~8) Bj E(Bj) = sigma_(i=1~256) Bij / 256 E(B1)+E(B2)+...+E(B8) = sigma_(j=1~8) E(Bj) = sigma_(j=1~8)[ sigma_(i=1~256) Bij ] / 256 交換求和順序 = sigma_(i=1~256)[ sigma_(j=1~8) Bij ] / 256 = sigma_(i=1~256) sumBi / 256 = E( sumB ) ※ 編輯: mantour (36.226.168.27 臺灣), 09/27/2021 20:54:11 ※ 編輯: mantour (36.226.168.27 臺灣), 09/27/2021 20:54:44 ※ 編輯: mantour (36.226.168.27 臺灣), 09/27/2021 20:56:50 ※ 編輯: mantour (36.226.168.27 臺灣), 09/27/2021 21:02:51







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:e-shopping站內搜尋

TOP