作者thumbg75446 (EDWIN)
看板Math
標題[機統] 一題期望值
時間Fri Sep 24 22:00:54 2021
有八個人圍成一圈考試
這八個人可以轉頭看與自己相鄰的其中一個人的答案
轉左邊或右邊是等機率的
每個人的轉頭也不會影響到別人轉哪個方向
那麼沒有被人看的人的個數期望值是多少?
想問這題要怎麼樣討論?
感謝大大
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.25.46.44 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1632492056.A.7EC.html
1F:→ plyong95084 : 8*(1/2)^2=2 ?09/24 22:31
2F:推 LPH66 : 樓上正解, 每個人有 1/4 機率不被看09/24 23:28
那如果是這樣,有(1/4)^8沒有人被看嗎?
※ 編輯: thumbg75446 (114.25.46.44 臺灣), 09/24/2021 23:43:29
3F:推 LPH66 : 這就不對了, 因為各個 1/4 不是獨立09/24 23:59
4F:推 tuhunger : 回原po,乘8和8次方的差別09/24 23:59
5F:→ LPH66 : 期望值的線性性質不需要獨立也能成立09/24 23:59
那不是獨立不就代表每個人不被看的機率不是1/4嗎?
※ 編輯: thumbg75446 (114.25.46.44 臺灣), 09/25/2021 00:23:42
6F:→ mantour : 轉左轉右機率相等,那會有人不轉嗎09/25 07:39
7F:→ mantour : 每個人不被看的機率都是1/4,但是已知左邊的左邊被09/25 07:41
8F:→ mantour : 看時,我被看的機率就不是1/4了09/25 07:41
9F:→ mantour : (請直接忽略我的第一行推文)09/25 07:42
10F:→ mantour : 例如8個人抽2支籤,每個人抽到的機率是1/4,但是因09/25 07:45
11F:→ mantour : 為不獨立,所以每個人都抽到的機率是0 而不是(1/409/25 07:45
12F:→ mantour : )^8,但是抽到的人數期望值還是(1/4)*8=209/25 07:45
13F:推 LPH66 : 乘法原理只能用在獨立的機率上09/25 11:42
14F:→ LPH66 : (或者該說兩個機率獨立表示可以用乘法原理乘出09/25 11:42
15F:→ LPH66 : 兩事件都發生的機率, 因為這就是兩機率獨立的定義)09/25 11:43
16F:→ LPH66 : 但這些都不影響期望值的線性性質09/25 11:44
17F:推 alan23273850: 所以一樓真的是對的嗎?09/25 13:10
18F:推 LPH66 : 咦等等, 我好像把兩種乘搞混了....09/25 13:17
19F:→ LPH66 : 喔沒事, 是那個乘法原理沒錯 09/25 13:18
20F:→ LPH66 : 一樓的算法就單純的把八個期望值相加而已所以沒問題 09/25 13:18
21F:→ LPH66 : 對該人來說, 1/4 機率有 1 個人, 其他時候有 0 人09/25 13:19
22F:→ LPH66 : 所以期望值數值就等於機率數值, 然後八個相加乘以 809/25 13:20
23F:推 arrenwu : 我是覺得你們把想要計算的隨機變數寫出來,可以避免 09/25 13:48
24F:→ arrenwu : 很多雞同鴨講的機會 09/25 13:48
25F:→ tyz : 我好奇一件事 按照題目的敘述 是否可以不轉頭看呢 09/25 21:45
謝謝各位解答!
回t大 一定要看其中一邊
※ 編輯: thumbg75446 (114.25.46.44 臺灣), 09/25/2021 22:44:43