作者andy880913 (相良醫生)
看板Math
標題[中學] 平面向量公式推廣
時間Tue Apr 27 13:52:00 2021
https://i.imgur.com/VdiMck6.jpg
這在平面向量可以算各種多邊形面積
想請問可不可以推廣到空間向量
如果變三階該怎麼算?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.138.234.25 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1619502722.A.2A0.html
1F:推 tzhau : 你要不要說清楚你要問的問題?是要算面積?還是體積04/27 14:27
2F:→ tzhau : ?04/27 14:27
好問題 本來是面積公式應該無法推廣成體積吧?
3F:推 chemmachine : 高維體積有關的有N維平行體體積為N維行列式,可以再04/27 14:46
5F:推 chemmachine : 更多的推廣有體積形式,一種微分形式,這個要看微分04/27 15:14
6F:→ chemmachine : 幾何,和WEDGE PRODUCT有關。你個公式是應用在2維的04/27 15:16
8F:→ chemmachine : 量師(測量員)公式運用到無限多點時的曲線包圍面積04/27 15:18
9F:→ chemmachine : 檢查就是二維格林公式,所以你的問題等價於問三維04/27 15:20
10F:→ chemmachine : 的格林定理,就是高斯定理。把高斯公式離散化就是你04/27 15:21
11F:→ chemmachine : 要的東西。更多的推廣在楔積,高斯散度定理,微分04/27 15:24
12F:→ chemmachine : 形式。04/27 15:24
13F:推 chemmachine : 還有斯托克斯定理 04/27 15:51
感謝這麼認真回答我
14F:推 alamabarry : 右邊不是標準寫法吧04/27 17:52
15F:推 chemmachine : 我在網路查到有那種寫法。04/27 18:40
16F:→ chemmachine : 查測量員公式的第一篇pdf04/27 18:40
※ 編輯: andy880913 (118.166.113.216 臺灣), 04/27/2021 22:20:09