Math 板


LINE

說到這裏,大家可能已經在抱怨:這不是很明顯嗎?如果你有幾個籃子,每籃內都至少有 一隻雞蛋,我們當然可以在每一個籃子抽一隻雞蛋吧!但是數學中一切命題都需要證明, 這個也不應例外。 ... 先說前者,「任意」這個字用於集合論之類的數學基礎時是十分含糊的,數學上不存在一 個明顯的函數f(X),可以在任何一個非空集合X中準確地抽出一個元素。 http://mathdb.blogspot.com/2008/03/blog-post_20.html 看了幾篇「選擇公理」的文章 還是不懂這個公理為什麼需要證明 求解? 公理 維基百科 在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被 視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明 時,因果關係畢竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且 符合直覺,如「a+b=b+a」。 --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 107.161.88.23 (美國)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1610099644.A.282.html
1F:→ Ricestone : 是因為無法以其他公理證明所以才只能以公理的形式 01/08 18:01
2F:→ Ricestone : 接受它的存在 因為實在太好用了 01/08 18:01
可是好像又有一些爭議 其中如下: 不過,這個爭論依然未完,因為對於這條公理不只是接納和不接納的問題,如果放棄這條 公理,有很多美好且乎合“常理”的結果會同時被放棄;但它實際上又與很多“常理”大 不協調。 其中一個為人熟識的不合乎常理的結果是“巴拿赫─塔斯基悖論”(Banach-Tarski Paradox),或稱“分球問題”。這個悖論可以說是違反了物理學定律,因為這個悖論說 可以把一個單位球體(半徑為1)分成有限個點集(最少可分成五份),然後通過一些剛 體運動,即旋轉和平移,再重新組合,不過在組合後,竟然成為兩個單位球體,也即是體 積增加了一倍,而這個悖論的證明是必須利用到“選擇公理”的。也就是說,如果我們選 擇接納“選擇公理”,則“巴拿赫─塔斯基悖論”便是一條定理,但現實中有這個可能嗎 ? https://bityl.co/57pv ※ 編輯: dharma (107.161.88.23 美國), 01/08/2021 18:31:01
3F:→ Ricestone : 這不算爭議啊 那些就是看起來不合理卻是正確的而已 01/08 19:03
4F:→ Ricestone : 反過來說就是你覺得選擇公理不該接納,那也不會有這 01/08 19:03
5F:→ Ricestone : 個被俗稱是悖論但實際上是定理的東西而已 01/08 19:04
6F:→ Ricestone : 重點是那個分球問題到底對不對,不是我們現實生活有 01/08 19:11
7F:→ Ricestone : 辦法去判定的,因為分球的方法本身就不可能現實實現 01/08 19:12
8F:→ Ricestone : 所以無從去說應該要對還是不對 01/08 19:12
9F:→ wohtp : 公理沒有對不對,只有合不合用。這裡的問題應該是我 01/09 02:08
10F:→ wohtp : 們不知道選擇公理什麼時候可能不合用,所以拿它來證 01/09 02:08
11F:→ wohtp : 明定理的數學家會怕。 01/09 02:08
12F:推 WINDHEAD : Banach-Tarski 沒有違反物理學定律啊 01/09 16:25
13F:推 WINDHEAD : 嚴格說起來「體積變兩倍是一個錯覺」 01/09 16:34
14F:→ WINDHEAD : 因為切出來的碎片是無法定義體積的,所以體積的可加 01/09 16:35
15F:推 WINDHEAD : 性在此被破壞了。 01/09 16:37
16F:→ WINDHEAD : 選擇公理沒那麼可怕,就跟基改食品標示一樣 01/09 16:38
17F:推 Linethan : 我還沒看Banach-Tarski定理的證明 但我在猜想其根本 01/10 14:14
18F:推 Linethan : 的道理是否和以下論述類似?考慮兩個interval集合 01/10 14:16
19F:→ Linethan : [0,1]和[0,2] 這兩個集合的元素個數(cardinality) 01/10 14:16
20F:→ Linethan : 是一樣多的 因為存在一對一的函數從[0,1]到[0,2] 01/10 14:17
21F:→ Linethan : 比如f(x)=2x 因此我們可以把線段[0,1]變換成[0,2] 01/10 14:18
22F:→ Linethan : 但是以長度來看 [0,2]的長度自然為[0,1]的兩倍 01/10 14:19
23F:→ Linethan : 也就是說從集合的角度來看 [0,1]和[0,2]一樣大 01/10 14:19
24F:→ Linethan : 但以長度來看它們不相同 這和分球問題的道理類似嗎? 01/10 14:20
25F:推 psion : 集合間可以bijective 是否就代表measure一定要相同? 01/10 15:28
26F:推 sunev : Banach-Tarski 有要求isometry 01/10 15:43
27F:推 Vulpix : 我記得分完的球都沒有 measure。 01/11 02:26
28F:推 xavier13540 : 回樓上L大: 分球定理只有旋轉平移 不只是bijection 01/12 13:16







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:e-shopping站內搜尋

TOP