作者johnson127 (@@)
看板Math
標題[其他] 拉式逆轉換
時間Sun Dec 26 19:09:06 2010
各位大大 我想請問一題拉式逆轉換
1/(s^2+1)^3
一開始 我是用摺積
將她拆成1/(s^2+1) 跟 1/(s^2+1)^2
1/(s^2+1) 逆轉換=>sint=f(t)
1/(s^2+1)^2 逆轉換=>-t/2cost+1/2sint=>g(t)
=>積分f(t)*g(t) 從0到t
∫[-(t-a)/2cos(t-a)+1/2sin(t-a)]sina da
=>-1/2∫tcos(t-a)sina-acos(t-a)sina-sin(t-a)sina da
算到這邊就卡住了 主要是因為 ∫acos(t-a)sina 不會積
還是說 一開始 我的想法就錯了
希望 大大幫個忙
最後她的答案是
-1/8t^2sint+3/8sint-3/8tcost
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.192.17.244
1F:推 G41271 :分部積分可解 12/26 19:50
2F:→ G41271 :acos(t-a)sina=a/2[sin(t)-sin(t-2a)] 12/26 19:52
3F:→ G41271 :前項直接積 後項再分部積分 12/26 19:52
4F:→ G41271 :摺積的積分通常繁雜,不是一般人算得出來的,建議少用 12/26 19:54