作者LimSinE (r=e^theta)
看板IMO_Taiwan
標題Re: [問題] IMO 2009 day1
時間Sat Jul 30 13:52:48 2011
閒著沒事,解舊題。因為是在路上,發現奇怪這題可以心算:::(心證?自由心證?)
然後剛查過Shortlist解非常詭異,不知道是不是因此才榮登No.3
Problem 3. Suppose that s_1, s_2, s_3, ... is a strictly increasing sequence
of positive integers such that the subsequence s_{s_1}, s_{s_2}, s_{s_3}, ...
and s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, ... are both arithmetic progressions.
Prove that the sequence s_1, s_2, s_3, ... is itself an arithmetic
progression.
Step 1: "兩個子序列的公差一樣",設為D
因為 s_1<s_1+1<=s_2<s_2_1<....
再取一次s,有一樣的不等式。兩子序列的極限=公差比,只可能是1,
不然必有一個會被另一超過。
此時又知 s_(s_n+1)-s_s_n = P, s_(s_(n+1))-s_(s_n+1)=Q為定值, P+Q=D
Step 2: "{s_(n+1)-s_n}" 有界" 顯然介於0和D之間
取最大值M,最小值m
由此可得 M(a-b)>= s_a-s_b >= m(a-b)
Step 3: "D=Mm"
D=s_s_(n+1)-s_n >= m(s_(n+1)-s_n),對n取最大值得 D>=mM
類似的由 D <= M(s_(n+1)-s_n),對n取最小值得 D<=mM
Step 4: "P=m"
顯然P>=m,用Step 3方法可知 Q>=m(M-1),故取等號
Step 5: "M=P=m"
類似Step 4.
贊曰:Shortlist解最奇怪的地方就是沒有先證兩個公差一樣
導致後面夜長夢多:::
這只有Step 2,3 是一樣的
--
r=e^theta
即使有改變,我始終如一。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 75.119.2.236
※ 編輯: LimSinE 來自: 75.119.2.236 (07/30 13:54)
1F:推 Dawsen:學長太強了!!! 08/01 13:32
2F:→ Dawsen:因為是數列的關係,Step 2很像是sup跟inf,有修過高維的 08/01 13:33
3F:→ Dawsen:比較容易想到要這樣取? 08/01 13:33