作者LimSinE (r=e^theta)
看板IMO_Taiwan
标题Re: [问题] IMO 2009 day1
时间Sat Jul 30 13:52:48 2011
闲着没事,解旧题。因为是在路上,发现奇怪这题可以心算:::(心证?自由心证?)
然後刚查过Shortlist解非常诡异,不知道是不是因此才荣登No.3
Problem 3. Suppose that s_1, s_2, s_3, ... is a strictly increasing sequence
of positive integers such that the subsequence s_{s_1}, s_{s_2}, s_{s_3}, ...
and s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, ... are both arithmetic progressions.
Prove that the sequence s_1, s_2, s_3, ... is itself an arithmetic
progression.
Step 1: "两个子序列的公差一样",设为D
因为 s_1<s_1+1<=s_2<s_2_1<....
再取一次s,有一样的不等式。两子序列的极限=公差比,只可能是1,
不然必有一个会被另一超过。
此时又知 s_(s_n+1)-s_s_n = P, s_(s_(n+1))-s_(s_n+1)=Q为定值, P+Q=D
Step 2: "{s_(n+1)-s_n}" 有界" 显然介於0和D之间
取最大值M,最小值m
由此可得 M(a-b)>= s_a-s_b >= m(a-b)
Step 3: "D=Mm"
D=s_s_(n+1)-s_n >= m(s_(n+1)-s_n),对n取最大值得 D>=mM
类似的由 D <= M(s_(n+1)-s_n),对n取最小值得 D<=mM
Step 4: "P=m"
显然P>=m,用Step 3方法可知 Q>=m(M-1),故取等号
Step 5: "M=P=m"
类似Step 4.
赞曰:Shortlist解最奇怪的地方就是没有先证两个公差一样
导致後面夜长梦多:::
这只有Step 2,3 是一样的
--
r=e^theta
即使有改变,我始终如一。
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 75.119.2.236
※ 编辑: LimSinE 来自: 75.119.2.236 (07/30 13:54)
1F:推 Dawsen:学长太强了!!! 08/01 13:32
2F:→ Dawsen:因为是数列的关系,Step 2很像是sup跟inf,有修过高维的 08/01 13:33
3F:→ Dawsen:比较容易想到要这样取? 08/01 13:33