作者present (情場殺手)
看板IMO_Taiwan
標題Re: [問題] IMO 2011 in Netherlands Day 1
時間Tue Jul 19 02:18:06 2011
※ 引述《FAlin (FA(ハガレン))》之銘言:
1. Given any set A = {a_1,a_2,a_3,a_4} of four distinct positive integers,
we denote the sum a_1 + a_2 + a_3 + a_4 by s_A. Let n_A denote the number
of pairs (i,j) with 1 ≦ i < j ≦ 4 for which a_i + a_j divides s_A.
Find all sets A of four distinct positive integers which achieve the
largest possible value of n_A.
不妨假設a_1<a_2<a_3<a_4
a_3+a_4與a_2+a_4不整除s_A 所以n_A≦4
又A={1,5,7,11}時 n_A=4 所以n_A最大值為4
求出集合A:
a_1+a_2|a_3+a_4 a_1+a_3|a_2+a_4 a_1+a_4|a_2+a_3 a_2+a_3|a_1+a_4
所以a_1+a_4=a_2+a_3
令a_2+a_4=α(a_1+a_3)、a_3+a_4=β(a_1+a_2),可得β>α
若α≧3,則β≧4,
且2(a_2+a_3)+(a_2+a_4)+(a_3+a_4)≧2(a_1+a_4)+3(a_1+a_3)+4(a_1+a_2)
所以0≧a_2+9*a_1,矛盾,所以α=2,即a_2+a_4=2(a_1+a_3)。
若β≧5,
則2(a_2+a_3)+(a_2+a_4)+(a_3+a_4)≧2(a_1+a_4)+2(a_1+a_3)+5(a_1+a_2)
所以0≧2*a_2+9*a_1,矛盾,所以β=3或4。
當β=3,可解得a_1:a_2:a_3:a_4=1:5:7:11,即A={k,5k,7k,11k};
當β=4,可解得a_1:a_2:a_3:a_4=1:11:19:29,即A={k,11k,19k,29k};
檢驗此二解可知符合題目條件。
--
錦瑟無端五十絃...一絃一柱思華年...
莊生曉夢迷蝴蝶...望帝春心託杜鵑...
滄海月明珠有淚...藍田日暖玉生煙...
此情可待成追憶...只是當時已惘然...多情者...情場殺手...
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.24.149.141
1F:推 LPH66:第二行筆誤...看半天才發現"a_2+a_3不整除s_A"應該是a_2+a_4 07/19 13:31
謝謝 已修正
※ 編輯: present 來自: 114.24.149.141 (07/19 15:28)