作者cuteSquirrel (可爱的小松鼠)
看板Math
标题Re: [中学] 机率问题
时间Sat Mar 30 18:35:15 2024
1
6 2
5 3
4
先思考,在六等分的圆周点的上,总共可以有几个直角三角形?
由 Thales' theorem 或者中学几何性质可知
过圆心的直径所构成的圆周上三点的三角型,必为直角三角形。
总共有 直径14, 直径25, 直径36 这三条过圆心的直径
第一点已知在1号点
剩下有两种分支
1号点出发的边长过圆心(也就是直径14):
总共有 △142, △143, △145, △146
△124, △134, △154, △164
1号点出发的边常不过圆心(由第二点第三点的连线去通过圆心):
总共有 △125, △136, △152, △163
这边的书写顺序,就刚好代表掷骰子得到的顶点号码与顺序
第一点已知在1号点,共有12种情况,可以构成直角三角形。
----------------------------------------------------------
掷出第二点,掷出第三点,全部有 6 * 6 = 36 种情况。
-----------------------------------------------------------
由上述讨论可得
P(第一点在1号点,构成直角三角形的机率) = 12 / 36 = 1 / 3
※ 引述《maggie531 (一起走吧~)》之铭言:
: https://i.imgur.com/AEeYpVe.jpg
: 答案三分之一
: 请版上高手帮忙
: 感激不尽:)
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 114.37.192.233 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1711794917.A.6B4.html
1F:→ musicbox810 : 请问(4*2)/(6*6)=2/9这样算的错误点在哪里? 03/30 19:18
2F:→ musicbox810 : 骰子是有可能掷出相同点数的吧? 03/30 19:19
3F:→ cuteSquirrel: 有写更详细了,在上面的讨论。 03/30 19:24
※ 编辑: cuteSquirrel (114.37.192.233 台湾), 03/30/2024 19:26:01
4F:推 LPH66 : 4*2 只有算到 1 是直径一端的那八种 03/30 19:26
5F:→ cuteSquirrel: 对 一种是点1出发过圆心,另一种是靠别人过圆心。 03/30 19:28
6F:→ cuteSquirrel: 解题关键在於: 某一边边长,一定要是过圆心的直径。 03/30 19:29
7F:→ musicbox810 : 谢谢各位,了解了 03/30 19:39
8F:推 maggie531 : 谢谢版友的帮忙:) 03/30 23:26