作者plover (>//////<)
看板Math
标题Re: [分析] 初微(59)
时间Sun Aug 21 09:32:59 2005
※ 引述《Dirichlet ( )》之铭言:
: ※ 引述《plover (>//////<)》之铭言:
: : Show that the convergence of Σ a_n, where a_n > 0 for all n
: : implies the convergence of Σ{(a_n)^(1/2)}/n.
: [(a_n)^(1/2) - 1/n]^2 = a_n + 1/n^2 - 2[(a_n)^(1/2)]/n ≧ 0
: a_n + 1/n^2 ≧ 2[(a_n)^(1/2)]/n
: By assumption, the fact Σ1/n^2 conv. and Comparison test
: we know Σ{(a_n)^(1/2)}/n conv.
如果题目「Σ{(a_n)^(1/2)}/n」改成「Σ{(a_n)^(1/2)} n^{-p} for real p」,
那麽 Σ{(a_n)^(1/2)} n^{-p} 的敛散性又是如何?
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.218.142