tutor 板


LINE

※ 引述《chliao2006 (chien)》之銘言: : Let n be a fixed positive integer, : and suppose we list in increasing order all numbers a/b , : where 1 <= a,b <= n , and the fraction a/b is in lowest terms. : Show that if a/b and c/d are consecutive fractions in this list, : then bc - ad = 1. 先證四條引理,以下 a, b, c, d 都是正整數. (L1) If bc-ad=1, then (a,b)=1, (c,d)=1, (a,c)=1 and (b,d)=1. [Pf] Suppose (a,b)=p>1. Put a=ph, b=pk. Then bc-ad = pkc - phd = p(kc-hd)≠1. (L2) For any fraction in its lowest term x/y with 1<x<y, there exists two fractions a/b and c/d such that a/b < x/y < c/d ≦1, bx-ay=1, cy-dx=1, bc-ad=1, x=a+c and y=b+d. [Pf] Let x, y be two positive integers such that (x,y)=1 and 1<x<y. Then there are two unique integers q, r satisfying that y = xq + r and 0<r<x. Since (x,r)=(x,y)=1, there exists some integer a such that 0<a<x and ar≡-1 (mod x). Put ar = px-1. Then px-1 = ar < xr => px-rx<1 => x(p-r)<1 => p≦r. And since px-1 = ar >0, px>1 => p≧1. Let b = aq + p. Then bx-ay = (aq+p)x - a(xq+r) = px-ar = 1. Furthermore, b = aq+p < xq+p ≦ xq+r = y. Since bx-ay=1>0, bx>ay, a/b < x/y. Since x-a>0 and y-b>0 as discussed above, put c=x-a and d=y-b. Then cy-dx = (x-a)y - (y-b)x = -ay+bx =1>0. Hence x/y < c/d. And we claim c/d≦1. For if c=d+k for some k≧1, Then cy-dx = (d+k)y-dx = d(y-x)+ky > d+ky >1. (L3) If a/b < x/y < c/d with bc-ad=1 and bx-ay=1, then y≧b+d. [Pf] Let a/b < c/d with bc-ad=1 be given. Suppose there are some fraction x/y with y<b+d such that a/b < x/y < c/d and bx-ay=1. Since a/b < x/y < c/d, x/y - a/b < c/d - a/b. => 1/by < 1/bd => d > y≧b+d. (→←) (L4) If a/b < x/y < c/d with bx-ay=1 and cy-dx=1, then (x-1)/y≦a/b and (x+1)/y≧c/d. [Pf] a/b - (x-1)/y = [ay-b(x-1)]/by = (-1+b)/by≧0. (x+1)/y - c/d = [d(x+1)-cy]/dy = (-1+d)/dy≧0. Having proved the lemmas, we now proceed to build the argument by induction. Since the sequence are symmetric, we discuss only the left half part of the sequence, i.e., the terms not greater than 1/1. S_1 ={1/1} S_2 ={1/2, 1/1} S_3 ={1/3, 1/2, 2/3, 1/1} We observed that S_1, S_2, S_3 are such sequencese that every term is of the form a/b where 1≦a, b≦n, and is in its lowest term, and that for every two consecutive terms a/b < c/d, bc-ad=1. And apparently, 1/n is always the first term in S_n. Let S_k be such a sequence. Then we are proceeding to construct S_(k+1) as a such sequence. First we locate 1/(k+1) before 1/k and (k+1)*1 - 1*k =1. Then let x/(k+1) with 1<x<k+1 be any fraction in its lowest term. By Lemma 2, there are two fractions p/q and r/s such that p/q < x/(k+1) < r/s≦1 where xq-p(k+1) = r(k+1)-sx = qr-ps =1, x=p+r and k+1=q+s. Since q<k+1, s<k+1, p/q < r/s ≦1, these two fractions p/q and r/s must be in S_k. Hence we can just put x/(k+1) between p/q and r/s. But is there any other term of S_k between p/q and r/s? Suppose there is some term of S_k u/v≠r/s following p/q. Then qu-pv=1, and v≦k < k+1 = q+s. By Lemma 3, it is impossible. Hence in S_k p/q and r/s must be consecutive. By Lemma 4, since p/q < x/(k+1) < r/s and qx-p(k+1) = r(k+1)-sx = 1, (x-1)/(k+1) and (x+1)/(k+1) will not be between p/q and r/s. Thus p/q < x/(k+1) < r/s are exactly consecutive in S_(k+1). 總算寫完了... 不過證明寫得不太好,尤其是L2卡了好久 --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.44.5.108
1F:推 YHank:推一下,如果你都是自己想的我真的覺得你很神...... 03/12 13:38
2F:→ YHank:不過看來這題很難對中學生有elegant proof了吧,我倒是很想 03/12 13:38
3F:→ YHank:問問原po,哪來的鬼私校國中留學班會解這種題目...= = 03/12 13:40
4F:→ YHank:還是學生是隨便看到一題問題就拿來問老師的?也太離譜吧= = 03/12 13:41
5F:→ LeonYo:就把S_n排一排觀察一些規律, 然後試著把這些規律證明出來 03/12 17:22
6F:→ LeonYo:對中學生除了L2有mod要花點力氣外, 其他應該都只是計算問題 03/12 17:23







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Tech_Job站內搜尋

TOP