tutor 板


LINE

※ 引述《chliao2006 (chien)》之铭言: : Let n be a fixed positive integer, : and suppose we list in increasing order all numbers a/b , : where 1 <= a,b <= n , and the fraction a/b is in lowest terms. : Show that if a/b and c/d are consecutive fractions in this list, : then bc - ad = 1. 先证四条引理,以下 a, b, c, d 都是正整数. (L1) If bc-ad=1, then (a,b)=1, (c,d)=1, (a,c)=1 and (b,d)=1. [Pf] Suppose (a,b)=p>1. Put a=ph, b=pk. Then bc-ad = pkc - phd = p(kc-hd)≠1. (L2) For any fraction in its lowest term x/y with 1<x<y, there exists two fractions a/b and c/d such that a/b < x/y < c/d ≦1, bx-ay=1, cy-dx=1, bc-ad=1, x=a+c and y=b+d. [Pf] Let x, y be two positive integers such that (x,y)=1 and 1<x<y. Then there are two unique integers q, r satisfying that y = xq + r and 0<r<x. Since (x,r)=(x,y)=1, there exists some integer a such that 0<a<x and ar≡-1 (mod x). Put ar = px-1. Then px-1 = ar < xr => px-rx<1 => x(p-r)<1 => p≦r. And since px-1 = ar >0, px>1 => p≧1. Let b = aq + p. Then bx-ay = (aq+p)x - a(xq+r) = px-ar = 1. Furthermore, b = aq+p < xq+p ≦ xq+r = y. Since bx-ay=1>0, bx>ay, a/b < x/y. Since x-a>0 and y-b>0 as discussed above, put c=x-a and d=y-b. Then cy-dx = (x-a)y - (y-b)x = -ay+bx =1>0. Hence x/y < c/d. And we claim c/d≦1. For if c=d+k for some k≧1, Then cy-dx = (d+k)y-dx = d(y-x)+ky > d+ky >1. (L3) If a/b < x/y < c/d with bc-ad=1 and bx-ay=1, then y≧b+d. [Pf] Let a/b < c/d with bc-ad=1 be given. Suppose there are some fraction x/y with y<b+d such that a/b < x/y < c/d and bx-ay=1. Since a/b < x/y < c/d, x/y - a/b < c/d - a/b. => 1/by < 1/bd => d > y≧b+d. (→←) (L4) If a/b < x/y < c/d with bx-ay=1 and cy-dx=1, then (x-1)/y≦a/b and (x+1)/y≧c/d. [Pf] a/b - (x-1)/y = [ay-b(x-1)]/by = (-1+b)/by≧0. (x+1)/y - c/d = [d(x+1)-cy]/dy = (-1+d)/dy≧0. Having proved the lemmas, we now proceed to build the argument by induction. Since the sequence are symmetric, we discuss only the left half part of the sequence, i.e., the terms not greater than 1/1. S_1 ={1/1} S_2 ={1/2, 1/1} S_3 ={1/3, 1/2, 2/3, 1/1} We observed that S_1, S_2, S_3 are such sequencese that every term is of the form a/b where 1≦a, b≦n, and is in its lowest term, and that for every two consecutive terms a/b < c/d, bc-ad=1. And apparently, 1/n is always the first term in S_n. Let S_k be such a sequence. Then we are proceeding to construct S_(k+1) as a such sequence. First we locate 1/(k+1) before 1/k and (k+1)*1 - 1*k =1. Then let x/(k+1) with 1<x<k+1 be any fraction in its lowest term. By Lemma 2, there are two fractions p/q and r/s such that p/q < x/(k+1) < r/s≦1 where xq-p(k+1) = r(k+1)-sx = qr-ps =1, x=p+r and k+1=q+s. Since q<k+1, s<k+1, p/q < r/s ≦1, these two fractions p/q and r/s must be in S_k. Hence we can just put x/(k+1) between p/q and r/s. But is there any other term of S_k between p/q and r/s? Suppose there is some term of S_k u/v≠r/s following p/q. Then qu-pv=1, and v≦k < k+1 = q+s. By Lemma 3, it is impossible. Hence in S_k p/q and r/s must be consecutive. By Lemma 4, since p/q < x/(k+1) < r/s and qx-p(k+1) = r(k+1)-sx = 1, (x-1)/(k+1) and (x+1)/(k+1) will not be between p/q and r/s. Thus p/q < x/(k+1) < r/s are exactly consecutive in S_(k+1). 总算写完了... 不过证明写得不太好,尤其是L2卡了好久 --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.44.5.108
1F:推 YHank:推一下,如果你都是自己想的我真的觉得你很神...... 03/12 13:38
2F:→ YHank:不过看来这题很难对中学生有elegant proof了吧,我倒是很想 03/12 13:38
3F:→ YHank:问问原po,哪来的鬼私校国中留学班会解这种题目...= = 03/12 13:40
4F:→ YHank:还是学生是随便看到一题问题就拿来问老师的?也太离谱吧= = 03/12 13:41
5F:→ LeonYo:就把S_n排一排观察一些规律, 然後试着把这些规律证明出来 03/12 17:22
6F:→ LeonYo:对中学生除了L2有mod要花点力气外, 其他应该都只是计算问题 03/12 17:23







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Tech_Job站内搜寻

TOP