作者sx4152 (呵呵)
看板trans_math
標題[向量] 向量場
時間Fri Jun 20 12:53:06 2014
題目:
-> ^ ^ ^
(a) show that vector F = (y^2 cosx +z^3)i +(2ysinx-4)j+(3xz^2 +2)k is a
conservative field
->
(b) find the scalar potential function for F
第一小題只要看F的旋度是否是零就可以證了
第二小題要怎麼算呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 49.159.82.129
※ 文章網址: http://webptt.com/m.aspx?n=bbs/trans_math/M.1403239990.A.475.html
1F:→ BaBi :若已確認Vector F為保守, 必存在有ㄧ f 滿足▽f = F 06/20 14:29
2F:→ BaBi :令 Vector F = A i + B j + C k 06/20 14:31
3F:→ BaBi :則有 f_x = A, f_y = B, f_z = C 06/20 14:32
4F:→ BaBi :接下來就是積分後比較係數, 有點在解ODE的味道 06/20 14:32
謝謝,我已經算出來了!
另外請教個問題,像第一小題那種題目能不能用偷吃步的算法
也就是說,只列出算旋度的行列式,然後不用算就寫答案是0
因為這種題目一定是保守場,只是這樣寫不知道會不會被扣分?
※ 編輯: sx4152 (49.159.82.129), 06/20/2014 15:24:13
5F:→ BaBi :你說呢... 計算題當然是希望你寫詳細點才不會有被扣 06/20 16:31
6F:→ BaBi :分的疑慮 06/20 16:31