NTUcourse 板


LINE

若是通識課程評價,請用 [通識] 分類,勿使用 [評價] 分類 標題範例:[通識] A58 普通心理學丙 林以正 (看完後請用ctrl+y刪除這兩行) ※ 本文是否可提供臺大同學轉作其他非營利用途?(須保留原作者 ID) (是/否/其他條件): 哪一學年度修課: ψ 授課教師 (若為多人合授請寫開課教師,以方便收錄) 陳俊全 λ 開課系所與授課對象 (是否為必修或通識課 / 內容是否與某些背景相關) 數學系 δ 課程大概內容 第1週 9/15,9/17 0. Introduction -problems arising from calculus; new topics: 0.1.real numbers and completeness 0.2 what is infinity? 0.3 topology of the Euclidean space: Riemann integral and compactness 0.4 uniform convergence of functions 0.5 differentiation in R^n 0.6 Solve a system of non-linear equations:- Inverse and Implicit Function The orems 0.7 Lebesgue's Theorem for integrals 0.8 Fourier series 1. The real number system and the Euclidean space 1.1 Sets and Functions: - power set of A, product of A and B - domain, target, range of a function, one-to-one, onto 1.2 Origin of number concept - Piraha people in the Amazon rainforest - Research on infants 1.3 Number system: natural numbers, integers, rational numbers 第2週 9/22,9/24 1.4 Ordered Fields - addition axioms, multiplication axioms and order axioms - sequence and limit: uniqueness of limits, sandwich lemma, limits of a sum and a product - Cauchy sequence - Axiom of completeness 第3週 9/29,10/01 Basic properties of Cauchy sequences Axioms of a complete ordered field 第4週 10/06,10/08 1-5 Construction of a complete ordered field 1-5-1 three approaches: infinite decimals, Cauchy sequences and Dedekind cuts 1-5-2 Cauchy sequence approach: - S=the set of all rational Cauchy sequences - an equivalence relation on S and the corresponding equivalence classes - addition and multiplication on the equivalence classes 第5週 10/13,10/15 1-5-2 Cauchy sequence approach: - order on the equivalence classes - Cauchy sequences in the space of the equivalence classes -the equivalent classes together with the addition, multiplication and order f orms a complete ordered field. 第6週 10/20,10/22 -Theorem: There exists a "unique" complete ordered field, called the real numb er system. - Monotone sequence property (MSP) -sup, inf and the least upper bound property (LUBP) 第7週 10/27,10/29 -Theorem: The three versions of completeness (CSP)+(AP), (MSP) and (LUBP) are equivalent. 1-6 limsup and liminf 第8週 11/03,11/05 - more properties and applications of limsup and liminf, 1-7 Cantor's theory of infinity - Definition of card A=card B and card A < card B - finite, countable and uncountable - an infinite subset of a countable set is countable - card N = card Q < card R = card RxR=card P(N), Cantor's diagonal method - card A < card P(A) - existence of an algebraic number 第9週 11/10,11/12 - Schroder-Bernstein Theorem - continuum hypothesis: Godel and Cohen 1-8 Some "paradoxes" about real numbers - a number of all knowledge - Pi is a normal number? Borel's theorem: Almost every real number is normal. - Richard's paradox 1-9 Complex numbers 1-10 Euclidean space - norm, metric, inner product, Schwarz's inequality Chapter 2 Topologies of Metric Spaces 2-1 Metric space: definition and examples 第10週 11/17,11/19 Midterm examination 2-2 Open sets and interior of a set 第11週 11/24,11/26 2-3 Closed sets, accumulation points, closure of a set 2-4 Boundary of a set 2-5 Sequences and limits 2-6 Completeness of a metric space 第12週 12/01,12/03 Chapter 3 Compact sets 3-1. Examples: the difference between I= [0,1] and I=(0,1]; consider continuou s function on I 3-2 Sequentially compact: bisection process and bounded sequence; Heine-Borel Theorem 3-3 Open cover and compact: - examples 第13週 12/08,12/10 - compact implies bounded and closed; counterexample - totally bounded; - Bolzano-Weierstrass Theorem 第14週 12/15,12/17 - compact iff totally bounded and complete in a metric space 3-4 Path-connected and connected - path connected implies connected Chapter 4 Continuous maps 4-1 Continuity - limit at a point - continuous at a point and on the whole domain - continuity defined by sequential limits 第15週 12/22,12/24 - continuity characterized by preimages of open and closed sets - continuity for +,-,?,?, and f(g(x)) 4-2 Images of compact and connected sets 4-3 Real-valued functions - Maximum-minimum theorem - Intermediate value theorem 4-4 Uniform continuity 第16週 12/29,12/31 Chapter 5 Uniform convergence of functions -Motivations 5-1 Pointwise and uniform convergence - examples - uniform convergence implies pointwise convergence - uniform convergence iff sup ρ(f_k,f) → 0 - Theorem: The limit function of an uniformly convergent sequence of continuous functions is continuous. 5-2 Cauchy criterion and M test - Cauchy criterion and uniform convergence - examples: uniformly convergence of series of functions 第17週 1/05,1/07 5-3 Integration and differentiation of sequences and series of functions - Theorem: uniform convergence implies convergence of the integrals - Theorem : pointwise convergence of the functions and uniform convergence of their derivatives together imply differentiability of the limit function 5-4 The space of continuous functions - completeness property - equicontinuity - Arzela-Ascoli Theorem 第18週 1/12 Final Exam (這些是 Ceiba 上寫的) Ω 私心推薦指數(以五分計) ★★★★★ 老師:★★★★(有趣老師) 喜歡看鬼滅:-★★★★★(老師說國中生才看鬼滅) 整體:★★★★ η 上課用書(影印講義或是指定教科書) 1. Jerrold E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, 2 nd Edition 2. Walter Rudin, Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics), McGraw-Hill Education; 3rd edition 3. Mathematical Analysis. Second Edition. Tom M. Apostol. 4. William R. Wade, An Introduction to Analysis, Prentice Hall, 4th Edition μ 上課方式(投影片、團體討論、老師教學風格) 都寫黑板,老師超有趣,可以去查俊全語錄,但常常遲到,可以睡晚一點XD 。其他就, 我覺得老師很神,上課每次的證明好像都記在腦子裡,好像沒看過他帶任何筆記,每次都 只有帶咖啡# σ 評分方式(給分甜嗎?是紮實分?) 1. homework and quiz 25% 2. midterm exam 35% 3. final exam 40% 我覺得是扎實分,期中平均78,期末平均49,但應該是有調分的。 ρ 考題型式、作業方式 考題我放在考試版了,會考上課證明跟作業,考前一週上的內容也是必考。BTW, 期中超 簡單,但期末直接大暴死QQ,不知道是不是每屆都這樣,你各位自己注意啊。 作業大概 2/3 簡單、1/3 難,每週大概會花4-5小時寫作業,有時候更久。 ω 其它(是否注重出席率?如果為外系選修,需先有什麼基礎較好嗎?老師個性? 加簽習慣?嚴禁遲到等…) 一起寫在總結OuO Ψ 總結 我覺得是外系的要想清楚,自己為啥要修這門課吧,我當初是想了解一些,常在論文中看 到的名詞跟概念。一學期下來雖然有學到,但其實我覺得有點不合時間成本,如果只是要 了解那些概念,自己去看書可能會比較快,但不可否認地,上課還是學到很多,算是有其 他意外的收穫,例如:找 bound 的技巧、norm的一些等價概念......。總之,是有收穫 的! --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.12.74.38 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTUcourse/M.1611684197.A.747.html ※ 編輯: Akkusaii3741 (101.12.74.38 臺灣), 01/27/2021 02:07:07
1F:→ Akkusaii3741: 欸?!用手機發文 p 幣好少好虧喔QQ 01/27 02:12
2F:推 unmolk: 不知道這篇rrro會不會回你>< 01/27 05:22
3F:推 a22735557: 期中考平均真高 前年只有及格左右 期末平均也差不多 01/27 07:45
4F:推 thenolet: 俊全分導真甜 羨慕 01/27 08:48
5F:推 rrro: 我要回什麼啊 XD,告訴你們我修高微得到 71 跟 70 分嗎 XD 01/27 22:47
6F:推 alan23273850: 樓上 rrro 01/27 23:13
7F:→ Akkusaii3741: rrro 成績蠻好的欸xDD 01/27 23:24
8F:推 rrro: 不高啦,去了 Berkeley 還被老師嫌棄「你高微分數也太低 01/28 12:49
9F:→ rrro: 」 01/28 12:49







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:iOS站內搜尋

TOP