NTUcourse 板


LINE

若是通识课程评价,请用 [通识] 分类,勿使用 [评价] 分类 标题范例:[通识] A58 普通心理学丙 林以正 (看完後请用ctrl+y删除这两行) ※ 本文是否可提供台大同学转作其他非营利用途?(须保留原作者 ID) (是/否/其他条件): 哪一学年度修课: ψ 授课教师 (若为多人合授请写开课教师,以方便收录) 陈俊全 λ 开课系所与授课对象 (是否为必修或通识课 / 内容是否与某些背景相关) 数学系 δ 课程大概内容 第1周 9/15,9/17 0. Introduction -problems arising from calculus; new topics: 0.1.real numbers and completeness 0.2 what is infinity? 0.3 topology of the Euclidean space: Riemann integral and compactness 0.4 uniform convergence of functions 0.5 differentiation in R^n 0.6 Solve a system of non-linear equations:- Inverse and Implicit Function The orems 0.7 Lebesgue's Theorem for integrals 0.8 Fourier series 1. The real number system and the Euclidean space 1.1 Sets and Functions: - power set of A, product of A and B - domain, target, range of a function, one-to-one, onto 1.2 Origin of number concept - Piraha people in the Amazon rainforest - Research on infants 1.3 Number system: natural numbers, integers, rational numbers 第2周 9/22,9/24 1.4 Ordered Fields - addition axioms, multiplication axioms and order axioms - sequence and limit: uniqueness of limits, sandwich lemma, limits of a sum and a product - Cauchy sequence - Axiom of completeness 第3周 9/29,10/01 Basic properties of Cauchy sequences Axioms of a complete ordered field 第4周 10/06,10/08 1-5 Construction of a complete ordered field 1-5-1 three approaches: infinite decimals, Cauchy sequences and Dedekind cuts 1-5-2 Cauchy sequence approach: - S=the set of all rational Cauchy sequences - an equivalence relation on S and the corresponding equivalence classes - addition and multiplication on the equivalence classes 第5周 10/13,10/15 1-5-2 Cauchy sequence approach: - order on the equivalence classes - Cauchy sequences in the space of the equivalence classes -the equivalent classes together with the addition, multiplication and order f orms a complete ordered field. 第6周 10/20,10/22 -Theorem: There exists a "unique" complete ordered field, called the real numb er system. - Monotone sequence property (MSP) -sup, inf and the least upper bound property (LUBP) 第7周 10/27,10/29 -Theorem: The three versions of completeness (CSP)+(AP), (MSP) and (LUBP) are equivalent. 1-6 limsup and liminf 第8周 11/03,11/05 - more properties and applications of limsup and liminf, 1-7 Cantor's theory of infinity - Definition of card A=card B and card A < card B - finite, countable and uncountable - an infinite subset of a countable set is countable - card N = card Q < card R = card RxR=card P(N), Cantor's diagonal method - card A < card P(A) - existence of an algebraic number 第9周 11/10,11/12 - Schroder-Bernstein Theorem - continuum hypothesis: Godel and Cohen 1-8 Some "paradoxes" about real numbers - a number of all knowledge - Pi is a normal number? Borel's theorem: Almost every real number is normal. - Richard's paradox 1-9 Complex numbers 1-10 Euclidean space - norm, metric, inner product, Schwarz's inequality Chapter 2 Topologies of Metric Spaces 2-1 Metric space: definition and examples 第10周 11/17,11/19 Midterm examination 2-2 Open sets and interior of a set 第11周 11/24,11/26 2-3 Closed sets, accumulation points, closure of a set 2-4 Boundary of a set 2-5 Sequences and limits 2-6 Completeness of a metric space 第12周 12/01,12/03 Chapter 3 Compact sets 3-1. Examples: the difference between I= [0,1] and I=(0,1]; consider continuou s function on I 3-2 Sequentially compact: bisection process and bounded sequence; Heine-Borel Theorem 3-3 Open cover and compact: - examples 第13周 12/08,12/10 - compact implies bounded and closed; counterexample - totally bounded; - Bolzano-Weierstrass Theorem 第14周 12/15,12/17 - compact iff totally bounded and complete in a metric space 3-4 Path-connected and connected - path connected implies connected Chapter 4 Continuous maps 4-1 Continuity - limit at a point - continuous at a point and on the whole domain - continuity defined by sequential limits 第15周 12/22,12/24 - continuity characterized by preimages of open and closed sets - continuity for +,-,?,?, and f(g(x)) 4-2 Images of compact and connected sets 4-3 Real-valued functions - Maximum-minimum theorem - Intermediate value theorem 4-4 Uniform continuity 第16周 12/29,12/31 Chapter 5 Uniform convergence of functions -Motivations 5-1 Pointwise and uniform convergence - examples - uniform convergence implies pointwise convergence - uniform convergence iff sup ρ(f_k,f) → 0 - Theorem: The limit function of an uniformly convergent sequence of continuous functions is continuous. 5-2 Cauchy criterion and M test - Cauchy criterion and uniform convergence - examples: uniformly convergence of series of functions 第17周 1/05,1/07 5-3 Integration and differentiation of sequences and series of functions - Theorem: uniform convergence implies convergence of the integrals - Theorem : pointwise convergence of the functions and uniform convergence of their derivatives together imply differentiability of the limit function 5-4 The space of continuous functions - completeness property - equicontinuity - Arzela-Ascoli Theorem 第18周 1/12 Final Exam (这些是 Ceiba 上写的) Ω 私心推荐指数(以五分计) ★★★★★ 老师:★★★★(有趣老师) 喜欢看鬼灭:-★★★★★(老师说国中生才看鬼灭) 整体:★★★★ η 上课用书(影印讲义或是指定教科书) 1. Jerrold E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, 2 nd Edition 2. Walter Rudin, Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics), McGraw-Hill Education; 3rd edition 3. Mathematical Analysis. Second Edition. Tom M. Apostol. 4. William R. Wade, An Introduction to Analysis, Prentice Hall, 4th Edition μ 上课方式(投影片、团体讨论、老师教学风格) 都写黑板,老师超有趣,可以去查俊全语录,但常常迟到,可以睡晚一点XD 。其他就, 我觉得老师很神,上课每次的证明好像都记在脑子里,好像没看过他带任何笔记,每次都 只有带咖啡# σ 评分方式(给分甜吗?是紮实分?) 1. homework and quiz 25% 2. midterm exam 35% 3. final exam 40% 我觉得是扎实分,期中平均78,期末平均49,但应该是有调分的。 ρ 考题型式、作业方式 考题我放在考试版了,会考上课证明跟作业,考前一周上的内容也是必考。BTW, 期中超 简单,但期末直接大暴死QQ,不知道是不是每届都这样,你各位自己注意啊。 作业大概 2/3 简单、1/3 难,每周大概会花4-5小时写作业,有时候更久。 ω 其它(是否注重出席率?如果为外系选修,需先有什麽基础较好吗?老师个性? 加签习惯?严禁迟到等…) 一起写在总结OuO Ψ 总结 我觉得是外系的要想清楚,自己为啥要修这门课吧,我当初是想了解一些,常在论文中看 到的名词跟概念。一学期下来虽然有学到,但其实我觉得有点不合时间成本,如果只是要 了解那些概念,自己去看书可能会比较快,但不可否认地,上课还是学到很多,算是有其 他意外的收获,例如:找 bound 的技巧、norm的一些等价概念......。总之,是有收获 的! --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 101.12.74.38 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTUcourse/M.1611684197.A.747.html ※ 编辑: Akkusaii3741 (101.12.74.38 台湾), 01/27/2021 02:07:07
1F:→ Akkusaii3741: 欸?!用手机发文 p 币好少好亏喔QQ 01/27 02:12
2F:推 unmolk: 不知道这篇rrro会不会回你>< 01/27 05:22
3F:推 a22735557: 期中考平均真高 前年只有及格左右 期末平均也差不多 01/27 07:45
4F:推 thenolet: 俊全分导真甜 羡慕 01/27 08:48
5F:推 rrro: 我要回什麽啊 XD,告诉你们我修高微得到 71 跟 70 分吗 XD 01/27 22:47
6F:推 alan23273850: 楼上 rrro 01/27 23:13
7F:→ Akkusaii3741: rrro 成绩蛮好的欸xDD 01/27 23:24
8F:推 rrro: 不高啦,去了 Berkeley 还被老师嫌弃「你高微分数也太低 01/28 12:49
9F:→ rrro: 」 01/28 12:49







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:WOW站内搜寻

TOP