NTUMath91 板


LINE

轉貼一篇爆文,這個題目出現在即將來臨的習題們中。 ----------------------------------------------------------- 發信人: [email protected] (Apostol), 看板: math 標 題: 分享...(代數環論) 發信站: 清華資訊(楓橋驛站) (Thu May 27 07:45:11 1999) 轉信站: ntnumath!news.ntnu!ctu-gate!news.nctu!news.ntust!news.civil.ncku!netn Let a^3 = a for all a in a ring R, show that R is commutative. (pf): Claim that if y^2 = y, and note that (yx -yxy)^2 = 0 = (xy - yxy)^2 for all x in R. (證:我們僅需要展開即可) And a^3 = a ==> a^4 = a^2. Now we have ( (a^2) x - (a^2) x (a^2) )^2 = 0 =( x (a^2) - (a^2) x (a^2) )^2 by the claim. So, ( (a^2) x - (a^2) x (a^2) )^3 = ( (a^2) x - (a^2) x (a^2) ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( (a^2) x - (a^2) x (a^2) )^2 * ( (a^2) x - (a^2) x (a^2) ) = 0. ~~ and ( x (a^2) - (a^2) x (a^2) )^3 = ( x (a^2) - (a^2) x (a^2) ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( x (a^2) - (a^2) x (a^2) )^2 * ( x (a^2) - (a^2) x (a^2) ) = 0. ~~ 畫線部分是我們要的, So we have ( (a^2) x - (a^2) x (a^2) ) = 0 = ( x (a^2) - (a^2) x (a^2) ) That's (a^2) x = x (a^2) for all x in R. i.e. a^2 in Z(R) for all a in R. ------------------(A) Using the fact: if a^2 + a in Z(R) for all a in R, then R is commutative. Z(R) = { z: rz = zr for all r in R } is a sub-ring of R. (這個事實一會再證;先拿來用) We want to show that a^2 + a in Z(R) for all a in R. Let's consider that ( a^2 + a )^2 = a^4 + 2 * a^3 + a^2 = a^2 + 2 * a + a^2 = 2( a^2 + a ) And note that (a^2 + a)^2 in Z(R) and a^2 in Z(R), => 2a in Z(R) by close property of group. (a^2 + a )= ( a^2 + a )^3 = a^6 + 3 * a^5 + 3 * a^4 + a^3 = a^2 + 3 * a + 3 * a^2 + a => 3 ( a^2 + a ) = 0 in Z(R). And note that 3 (a^2 + a) in Z(R) and a^2 in Z(R) => 3a in R. by close property of group. Therefore, we get a in Z(R).-----------------------(B) So, by (A) and (B), we can use the fact to Q.E.D. Now we come to show the fact: Let R be a ring. Show that if a^2 + a in Z(R) for all a in R. Then R is a commutative ring. Consider (a+b)^2 + (a+b) = a^2 + ab + ba + b^2 + a + b. in Z(R) Therefore, ab + ba in Z(R) that's for every x in R, we have x(ab+ba)=(ab+ba)x. Choose x = a , we can get aab = baa => aa in Z(R) since b is arbitrary. So, by a^2 + a in Z(R) and a^2 in Z(R) => a in Z(R) since Z(R) is still a ring under the reduced operations. Since a is arbitary chosen , that is Z(R) = R. We are done! Now we give it a try for another statement: Let a^4 = a for all a in a ring R , show that R is commutative. (Pf): Still want to show that if a^2 + a in Z(R) for all a in R, then R is Commutative. Consider that r^4 = r = (-r)^4 = -r for all r in R => 2r = 0 for all r in R. So, (a^2 + a)^2 = a^4 + 2 * a^3 + a^2 = a + a^2 . Let y = a^2 + a. we have y^2 = y. So we have (yx -yxy)^2 = 0 = (xy - yxy)^2 for all x in R. Implies (yx - yxy)^4 = 0 = yx - yxy & (xy - yxy)^4 = 0 = xy - yxy. => for all x in R, we have (a^2 + a)x = x(a^2 + a) Therefore, a^2 + a in Z(R) for all a in R. Q.E.D. --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 211.20.209.169
1F:→ daiYuTsung:這是什麼? 推 218.160.26.183 10/11







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:WOW站內搜尋

TOP