NTUMath91 板


LINE

转贴一篇爆文,这个题目出现在即将来临的习题们中。 ----------------------------------------------------------- 发信人: [email protected] (Apostol), 看板: math 标 题: 分享...(代数环论) 发信站: 清华资讯(枫桥驿站) (Thu May 27 07:45:11 1999) 转信站: ntnumath!news.ntnu!ctu-gate!news.nctu!news.ntust!news.civil.ncku!netn Let a^3 = a for all a in a ring R, show that R is commutative. (pf): Claim that if y^2 = y, and note that (yx -yxy)^2 = 0 = (xy - yxy)^2 for all x in R. (证:我们仅需要展开即可) And a^3 = a ==> a^4 = a^2. Now we have ( (a^2) x - (a^2) x (a^2) )^2 = 0 =( x (a^2) - (a^2) x (a^2) )^2 by the claim. So, ( (a^2) x - (a^2) x (a^2) )^3 = ( (a^2) x - (a^2) x (a^2) ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( (a^2) x - (a^2) x (a^2) )^2 * ( (a^2) x - (a^2) x (a^2) ) = 0. ~~ and ( x (a^2) - (a^2) x (a^2) )^3 = ( x (a^2) - (a^2) x (a^2) ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( x (a^2) - (a^2) x (a^2) )^2 * ( x (a^2) - (a^2) x (a^2) ) = 0. ~~ 画线部分是我们要的, So we have ( (a^2) x - (a^2) x (a^2) ) = 0 = ( x (a^2) - (a^2) x (a^2) ) That's (a^2) x = x (a^2) for all x in R. i.e. a^2 in Z(R) for all a in R. ------------------(A) Using the fact: if a^2 + a in Z(R) for all a in R, then R is commutative. Z(R) = { z: rz = zr for all r in R } is a sub-ring of R. (这个事实一会再证;先拿来用) We want to show that a^2 + a in Z(R) for all a in R. Let's consider that ( a^2 + a )^2 = a^4 + 2 * a^3 + a^2 = a^2 + 2 * a + a^2 = 2( a^2 + a ) And note that (a^2 + a)^2 in Z(R) and a^2 in Z(R), => 2a in Z(R) by close property of group. (a^2 + a )= ( a^2 + a )^3 = a^6 + 3 * a^5 + 3 * a^4 + a^3 = a^2 + 3 * a + 3 * a^2 + a => 3 ( a^2 + a ) = 0 in Z(R). And note that 3 (a^2 + a) in Z(R) and a^2 in Z(R) => 3a in R. by close property of group. Therefore, we get a in Z(R).-----------------------(B) So, by (A) and (B), we can use the fact to Q.E.D. Now we come to show the fact: Let R be a ring. Show that if a^2 + a in Z(R) for all a in R. Then R is a commutative ring. Consider (a+b)^2 + (a+b) = a^2 + ab + ba + b^2 + a + b. in Z(R) Therefore, ab + ba in Z(R) that's for every x in R, we have x(ab+ba)=(ab+ba)x. Choose x = a , we can get aab = baa => aa in Z(R) since b is arbitrary. So, by a^2 + a in Z(R) and a^2 in Z(R) => a in Z(R) since Z(R) is still a ring under the reduced operations. Since a is arbitary chosen , that is Z(R) = R. We are done! Now we give it a try for another statement: Let a^4 = a for all a in a ring R , show that R is commutative. (Pf): Still want to show that if a^2 + a in Z(R) for all a in R, then R is Commutative. Consider that r^4 = r = (-r)^4 = -r for all r in R => 2r = 0 for all r in R. So, (a^2 + a)^2 = a^4 + 2 * a^3 + a^2 = a + a^2 . Let y = a^2 + a. we have y^2 = y. So we have (yx -yxy)^2 = 0 = (xy - yxy)^2 for all x in R. Implies (yx - yxy)^4 = 0 = yx - yxy & (xy - yxy)^4 = 0 = xy - yxy. => for all x in R, we have (a^2 + a)x = x(a^2 + a) Therefore, a^2 + a in Z(R) for all a in R. Q.E.D. --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 211.20.209.169
1F:→ daiYuTsung:这是什麽? 推 218.160.26.183 10/11







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BuyTogether站内搜寻

TOP