NTU-Exam 板


LINE

課程名稱︰電腦視覺 課程性質︰資工系選修 課程教師:傅楸善 開課學院:電機資訊學院 開課系所︰資訊工程學系 考試日期(年月日)︰2024/10/22 考試時限(分鐘):180 分鐘 試題 : 1. (62%) Please define the following terms and explain the content, purpose, and application of each term and give an illustrative example if possible. If possi- ble, define the term in mathematical equation. For example: thresholding: an image point operation that produces a binary image from a gray scale image. A binary-1 is produced on the output image whenever a pixel value on the input image is above a specified minimum threshold level. A binary-0 is produced otherwise. Alternatively, thresholding can produce a binary-1 on the output image whenever a pixel value on the input image is below a specified ma- ximum threshold level. A binary-0 is produced otherwise. (1) template matching (2) feature extraction (3) region centroid (4) region area (5) image segmentation (6) edge linking (7) corner finding (8) labeling (9) noise suppression (10) background normalization (11) 2D discrete Euclidean space (12) 4-connectivity (13) border pixel (14) region perimeter (15) octagon (16) GLCM: Gray Level Co-occurrence Matrix (17) image contrast (18) Bayes decision rule (19) economic gain matrix (20) statistical pattern recognition (21) conditional probability (22) fair game assumption (23) reserving judgment (24) maximin decision rule (25) dilation (26) erosion (27) opening (28) closing (29) mathematical morphology (30) operator extensive (31) idempotent 2. (8%) When binarizing image, we should find the best threshold of this image. Therefore, please list two ways (statistical methods) to find the best threshold of the image and explain advantages and disadvantages in detail. 3. (6%) In the Classical Connected Components Labeling Algorithm, we face a big problem - global equivalence table may be too large for memory, so what kind of methods can solve this problem? Please explain differences, advantages, and dis- advantages. 4. (6%) Please describe the method, steps, and results of YouAnamoly: Unified Anamoly Detection for Wafer Defect Inspection. 5. (6%) Please describe the method, steps, and results of Fast In-Bed Human Pose Estimation Using RGB-D (Red, Green, Blue -- Depth) Images. 6. (6%) Please describe the method, steps, and results of YuLPR: Moving Vehicle License Plate Recognition. 7. (6%) Please describe the method, steps, and results of Text to Image Genera- tion with Stable Diffusion. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.230.36.163 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1731406688.A.062.html ※ 編輯: xavier13540 (36.230.36.163 臺灣), 11/12/2024 18:18:36
1F:推 rod24574575 : 收錄資訊系! 11/12 20:42







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:e-shopping站內搜尋

TOP