NTU-Exam 板


LINE

课程名称︰电脑视觉 课程性质︰资工系选修 课程教师:傅楸善 开课学院:电机资讯学院 开课系所︰资讯工程学系 考试日期(年月日)︰2024/10/22 考试时限(分钟):180 分钟 试题 : 1. (62%) Please define the following terms and explain the content, purpose, and application of each term and give an illustrative example if possible. If possi- ble, define the term in mathematical equation. For example: thresholding: an image point operation that produces a binary image from a gray scale image. A binary-1 is produced on the output image whenever a pixel value on the input image is above a specified minimum threshold level. A binary-0 is produced otherwise. Alternatively, thresholding can produce a binary-1 on the output image whenever a pixel value on the input image is below a specified ma- ximum threshold level. A binary-0 is produced otherwise. (1) template matching (2) feature extraction (3) region centroid (4) region area (5) image segmentation (6) edge linking (7) corner finding (8) labeling (9) noise suppression (10) background normalization (11) 2D discrete Euclidean space (12) 4-connectivity (13) border pixel (14) region perimeter (15) octagon (16) GLCM: Gray Level Co-occurrence Matrix (17) image contrast (18) Bayes decision rule (19) economic gain matrix (20) statistical pattern recognition (21) conditional probability (22) fair game assumption (23) reserving judgment (24) maximin decision rule (25) dilation (26) erosion (27) opening (28) closing (29) mathematical morphology (30) operator extensive (31) idempotent 2. (8%) When binarizing image, we should find the best threshold of this image. Therefore, please list two ways (statistical methods) to find the best threshold of the image and explain advantages and disadvantages in detail. 3. (6%) In the Classical Connected Components Labeling Algorithm, we face a big problem - global equivalence table may be too large for memory, so what kind of methods can solve this problem? Please explain differences, advantages, and dis- advantages. 4. (6%) Please describe the method, steps, and results of YouAnamoly: Unified Anamoly Detection for Wafer Defect Inspection. 5. (6%) Please describe the method, steps, and results of Fast In-Bed Human Pose Estimation Using RGB-D (Red, Green, Blue -- Depth) Images. 6. (6%) Please describe the method, steps, and results of YuLPR: Moving Vehicle License Plate Recognition. 7. (6%) Please describe the method, steps, and results of Text to Image Genera- tion with Stable Diffusion. --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 36.230.36.163 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTU-Exam/M.1731406688.A.062.html ※ 编辑: xavier13540 (36.230.36.163 台湾), 11/12/2024 18:18:36
1F:推 rod24574575 : 收录资讯系! 11/12 20:42







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:WOW站内搜寻

TOP