NTU-Exam 板


LINE

課程名稱︰數量方法入門 課程性質︰經研所必修 課程教師︰朱玉琦 開課學院:社科院 開課系所︰經研所 考試日期(年月日)︰110.08.20 考試時限(分鐘):180 試題 : 部分數學式用latex語法撰寫。 Preample: You have 3 hours to answer the following questions. The total number of points is 110. You need to answer each questions in English. If you have stated a the- orem in lecture notes (including homework), you may use it without proving it unless I explicitly ask you to, but you need to describe what the theorem is a- nd why you can apply that theorem. For example, if there are some assumptions for that theorem to be applicable, you need to show that those assumptions are met in your problem. 1. (20 points) Consider a sequence {v_n} in \R^m. Show that \norm{v_n} converg- es to 0 if and only if v_n converges to 0. 2. (14 points) Consider a sequence {x_n}_{n=1}^\infty in \R^m converges to x. (a) (8 points) Show that every subsequence of {x_n}_{n=1}^\infty converges. (b) (6 points) Given your answer from (a), why does a subsequence of {x_n}_{n=1}^\infty cannot converge to a point different from x? 3. (6 points) Let {x_n} and {y_n} be two bounded sequences in \R^1. Show that given any n, \inf{x_n+y_n,x_{n+1}+y_{n+1},...} \geq \inf{x_n,x_{n+1},...}+\inf{y_n,y_{n+1}, ...}. 4. (8 points) Find the supremum and maximum for the following case: X = \Set{x\in\R | x=n/(2n+1), n=1,2,...}. 5. (8points) The functions F and G are defined as F(x)=2x+1,x>0, and G(x) = 1/x if x\geq 1 \\ = 0 if x<1. (a) Verify that R(F)\subseteq D(G). Find the domain and range of (GoF)(x) (Note: here I am asking the range that (GoF) maps“on to"). (b) Find the formula for (GoF)(x). 6. (8points) Consider a function f : S\toT, with A\subset S and B\subset T. (a) Define the set of f^{-1}(f(A)). (b) Define the set of f(f^{-1}(B)). 7. (8 points) Suppose that a function is f = {(1, 3), (2, 5), (3, 8), (4, 10), (5, 11), (6, 4), (7, 6), (8, 8), (9, 10), (10, 12)} (recall that a function is a set of ordered pairs), so this is a function from {1, 2, ...., 10} into \R^1. Let A={1,2,3} and B={6,8,10,12,15}. (a) Write down all the elements in f^{-1}(f(A)). (b) Write down all the elements in f(f^{-1}(B)). 8. (8 points) Suppose a and b are real numbers. Find a and b such that the fol- lowing vectors in \R^4 are linearly dependent. v_1 = [1 2 -2 4]^T, v_2 = [0 1 1 2]^T, v_3 = [2 -1 a b]^T. 9. (8 points) A = \bmatrix{1 2 \\ 3 2}. (a) (5 points) Find the eigenvalues and eigenvectors of A (b) (3 points) There exists a unique solution to solve Ax = b for every b. True or False? 10. (10 points) Discuss why the following proofs are incorrect. (a) Prove that if a sequence has only one limit point p, then this sequence co- nverges to p. Proof: Let us prove by contradiction. Suppose that the sequence xn does not converge to p. Then there exists an e>0 and for all N such that d(x_n,p)\geq e if n\geqN . Then we find an e that there are finite indices n for which d(x_n,p)<e. Ther- efore, p cannot be a limit point. (b) Suppose that x_n\to0. Show that \lim_{n\to\infty}x_n\sin\frac{1}{x_n}=0. Proof: By \lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n, we have \lim_{n\to\infty}x_n\sin\frac{1}{x_n} = \lim_{n\to\infty}x_n\lim_{n\to\infty}\sin\frac{1}{x_n}. Because the range of \sin(1/x_n) is bounded in [-1,1], and x_n tends to zero as n is sufficiently large, the product of the two must eventually tend to zero 11. (12 points) Please state whether each of the following statements is true or false. If your answer is true, give a brief proof or explanation to the sta- tement. If your answer is false, you must provide a counter example, or explain why the statement is false. (a) If \sup A exists, then \sup A = \max A. (b) If \sup A does not exist, then \max A does not exist. (c) If \max A exists, then \sup A\in A. (d) \sup A has to be an element of A. --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.241.100.193 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/NTU-Exam/M.1656096808.A.C55.html
1F:推 cal28802672 : pream"b"le 08/15 07:54
2F:推 alan23273850: 這看起來根本就是高微的初級版 08/28 12:49







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BuyTogether站內搜尋

TOP