NTU-Exam 板


LINE

课程名称︰数量方法入门 课程性质︰经研所必修 课程教师︰朱玉琦 开课学院:社科院 开课系所︰经研所 考试日期(年月日)︰110.08.20 考试时限(分钟):180 试题 : 部分数学式用latex语法撰写。 Preample: You have 3 hours to answer the following questions. The total number of points is 110. You need to answer each questions in English. If you have stated a the- orem in lecture notes (including homework), you may use it without proving it unless I explicitly ask you to, but you need to describe what the theorem is a- nd why you can apply that theorem. For example, if there are some assumptions for that theorem to be applicable, you need to show that those assumptions are met in your problem. 1. (20 points) Consider a sequence {v_n} in \R^m. Show that \norm{v_n} converg- es to 0 if and only if v_n converges to 0. 2. (14 points) Consider a sequence {x_n}_{n=1}^\infty in \R^m converges to x. (a) (8 points) Show that every subsequence of {x_n}_{n=1}^\infty converges. (b) (6 points) Given your answer from (a), why does a subsequence of {x_n}_{n=1}^\infty cannot converge to a point different from x? 3. (6 points) Let {x_n} and {y_n} be two bounded sequences in \R^1. Show that given any n, \inf{x_n+y_n,x_{n+1}+y_{n+1},...} \geq \inf{x_n,x_{n+1},...}+\inf{y_n,y_{n+1}, ...}. 4. (8 points) Find the supremum and maximum for the following case: X = \Set{x\in\R | x=n/(2n+1), n=1,2,...}. 5. (8points) The functions F and G are defined as F(x)=2x+1,x>0, and G(x) = 1/x if x\geq 1 \\ = 0 if x<1. (a) Verify that R(F)\subseteq D(G). Find the domain and range of (GoF)(x) (Note: here I am asking the range that (GoF) maps“on to"). (b) Find the formula for (GoF)(x). 6. (8points) Consider a function f : S\toT, with A\subset S and B\subset T. (a) Define the set of f^{-1}(f(A)). (b) Define the set of f(f^{-1}(B)). 7. (8 points) Suppose that a function is f = {(1, 3), (2, 5), (3, 8), (4, 10), (5, 11), (6, 4), (7, 6), (8, 8), (9, 10), (10, 12)} (recall that a function is a set of ordered pairs), so this is a function from {1, 2, ...., 10} into \R^1. Let A={1,2,3} and B={6,8,10,12,15}. (a) Write down all the elements in f^{-1}(f(A)). (b) Write down all the elements in f(f^{-1}(B)). 8. (8 points) Suppose a and b are real numbers. Find a and b such that the fol- lowing vectors in \R^4 are linearly dependent. v_1 = [1 2 -2 4]^T, v_2 = [0 1 1 2]^T, v_3 = [2 -1 a b]^T. 9. (8 points) A = \bmatrix{1 2 \\ 3 2}. (a) (5 points) Find the eigenvalues and eigenvectors of A (b) (3 points) There exists a unique solution to solve Ax = b for every b. True or False? 10. (10 points) Discuss why the following proofs are incorrect. (a) Prove that if a sequence has only one limit point p, then this sequence co- nverges to p. Proof: Let us prove by contradiction. Suppose that the sequence xn does not converge to p. Then there exists an e>0 and for all N such that d(x_n,p)\geq e if n\geqN . Then we find an e that there are finite indices n for which d(x_n,p)<e. Ther- efore, p cannot be a limit point. (b) Suppose that x_n\to0. Show that \lim_{n\to\infty}x_n\sin\frac{1}{x_n}=0. Proof: By \lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n, we have \lim_{n\to\infty}x_n\sin\frac{1}{x_n} = \lim_{n\to\infty}x_n\lim_{n\to\infty}\sin\frac{1}{x_n}. Because the range of \sin(1/x_n) is bounded in [-1,1], and x_n tends to zero as n is sufficiently large, the product of the two must eventually tend to zero 11. (12 points) Please state whether each of the following statements is true or false. If your answer is true, give a brief proof or explanation to the sta- tement. If your answer is false, you must provide a counter example, or explain why the statement is false. (a) If \sup A exists, then \sup A = \max A. (b) If \sup A does not exist, then \max A does not exist. (c) If \max A exists, then \sup A\in A. (d) \sup A has to be an element of A. --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 111.241.100.193 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTU-Exam/M.1656096808.A.C55.html
1F:推 cal28802672 : pream"b"le 08/15 07:54
2F:推 alan23273850: 这看起来根本就是高微的初级版 08/28 12:49







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BuyTogether站内搜寻

TOP