NTU-Exam 板


LINE

課程名稱︰通訊隨機過程 課程性質︰選修 課程教師︰鐘嘉德 開課學院:電資學院 開課系所︰電信所 電機所 考試日期(年月日)︰ 考試時限(分鐘):3HR 是否需發放獎勵金:是 試題 : 1. Determine whether each of the following statements is true or false. If the statement is true, prove it. If the statement is false, give a counterexapmle or explanation. Corrent choice without any proof, counterexample or explanation is not acceptable. (a) For any real random X(μ), E(X^2(μ)) ≧ E^2(X(μ)). (b) If X1(μ) is Gaussian random variable and if, given X1(μ), X2(μ) is conditionally Gaussian distributed, then X2(μ) is marginally Gaussian dustributed. (c) Let X1(μ),X2(μ),...,Xn(μ) be jointly Gaussian random variables with zero mean. If Xi(μ) and Xj(μ) are orthogonal for any i≠j, then X1(μ), X2(μ),...,Xn(μ) are mutually independent. (d) If X(μ,t) and Y(μ,t) are jointly Gaussian random processes, then aX(μ,t) + bY(μ,t) is a Gaussian process for arbitrary real constants a and b with ab≠0. (e) Consider the discrete-time random process S1(μ),S2(μ),S3(μ)...where Sn(μ) is defined by Sn(μ) = Σ Xi(μ) with X1(μ), X2(μ),X3(μ)... (i=1 to n) being independent and identical distributed Gaussian random variables which have zero mean and unit variance. It is true that S1(μ), S2(μ), S3(μ),...is a stationary random process. (f) Every white noise is a Marcov process (g) Let X(μ,t) be a Gaussian random process. If X(μ,t) has mean zero and autocorrelation function Rx(t1,t2) = sin^2(t1-t2)/(t1-t2)^2, then X(μ,t) is strict sense stationary. (h) Let X(μ,t) be a Gaussian random process with zero mean. If E[X(μ,t1)X(μ,t3)] + E[X(μ,t2)X(μ,t4)] = E[X(μ,t1)X(μ,t4)] + E[X(μ,t2)X(μ,t3)] for t1≦t2≦t3≦t4 then X(μ,t) is Marcov. 2. Consider the real-valued Gaussian random process X(μ,t) which have zero mean and autocorrelation Rx(t1,t2)= E(X(μ,t1)X(μ,t2))= 1+|t1|, t1≧t2 1+|t2|, t2≧t1 Answer the following question (a) Determine whether X(μ,t) is wide-sense stationary (b) Find the probability density function of Y(μ) = Σ(n=1 to N) X(μ,n) (c) Evaluate E[X(μ,-1) + X(μ,+1)]^4 3. Let X1(μ),X2(μ),...,Xn(μ) be independent and identical distributed (i.i.d) random variables with the common probability density function (p.d.f) fx(x)= 1/2δ(x+1) + 1/2δ(x-1), where δ(x) is Dirac function. Also let Y1(μ),Y2(μ),...,Yn(μ) be i.i.d Gaussian random variables with zero mean and unit variance. It is also given that Xi(μ) is independent of Yj(μ) for all i,j. Find the p.d.f and characteristic function of the random variable Σ(k=1 to n ) Xk(μ)Yk(μ) ~ 4. Define complex-valued Gaussian random variable Zn(μ) = Xn(μ)+jY(μ), n=1,2,..,N, where {Xn(μ),Yn(μ)}(n=1 to N) are jointly real-valued i.i.d. Gaussian random variables, which have zero mean and unit variance. ~ k ~ N ~* (a) Define Wk(μ) =[Π Zi(μ)]˙[Π Zm(μ)], k=1,2,...,N-1 (* denote i=1 m =k+1 ~ N ~* ~ N ~* the complex conjurate), W (μ) = Π Zm(μ) ,and W (μ)= Π Zi(μ). 0 m=1 N i=1 ~ If N=2, find E[Wk(μ)] for k=0,1,2,...,N (b) Find the characteristic function of a new random variable N ~ 2 V(μ) = Σ |Zn(μ)| n=1 5. Consider a linear and time-invariant system eith continus real input X(μ,t), continuous real output Y(μ,t), continuous real implues resopose h(t), and system H(ω). Let X(μ,t) and Y(μ,t) are both wide-sense stationary random processes with mean η_x and η_y,respectively, autocorrelation function Rx(τ) and Ry(τ), respectively. and power spetrum density Sx(ω) and Sy(ω),respectively. Also let h(t)=1 if |t|<1, and h(t)=0 otherwise. (a) It is known that η_y = α˙η_x with a constant α, Determine α (b) Express Ry(τ) in terms of Rx(τ). (c) Express Sy(ω) in terms of Sx(ω) 6. Cars arrive at a bridge entrance according to a Poisson process of rate λ=15 cars per minute. (a) Find the probability that in a given 4 minute period there are 3 cars arrivals during the first minute and 2 cars arrivals in the last minute. (b) Find the mean and variance od the time of the tenth cae arrival, given that the time of the fifth car arrival is T minutes (c) Assume that the bridge is long enough so that it can virtually accommodate an infinite number of cars. Further, let the time that each car stay on the bridge be independent ane exponetially destributed with mean μ=1 minute. Under this assumption the bridge can be modeled as an M/M/∞ queuing system. Find the mean number of cars on the bridge 7. Consider a discrete-time two-events hpmogeneous Markov chain Xk(μ), k=0,1,2,...,with the following statistical description: Pr(X0(μ)=1) = Pr(X0(μ)=2) = 1/2 Pr(Xn(μ)=1 | Xn-1(μ)=1) = Pr(Xn(μ)=2 | Xn-1(μ)=1) =1/2 Pr(Xn(μ)=2 | Xn(μ)=2) =1 Find the marginal distribution of the increment random variable Z1(μ) = X1(μ)-X0(μ) and Z2(μ) = X2(μ)-X1(μ), and check whether Z1(μ) and Z2(μ) are independent increment. What do you observe? --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.45.234.171







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Gossiping站內搜尋

TOP