NTU-Exam 板


LINE

课程名称︰通讯随机过程 课程性质︰选修 课程教师︰钟嘉德 开课学院:电资学院 开课系所︰电信所 电机所 考试日期(年月日)︰ 考试时限(分钟):3HR 是否需发放奖励金:是 试题 : 1. Determine whether each of the following statements is true or false. If the statement is true, prove it. If the statement is false, give a counterexapmle or explanation. Corrent choice without any proof, counterexample or explanation is not acceptable. (a) For any real random X(μ), E(X^2(μ)) ≧ E^2(X(μ)). (b) If X1(μ) is Gaussian random variable and if, given X1(μ), X2(μ) is conditionally Gaussian distributed, then X2(μ) is marginally Gaussian dustributed. (c) Let X1(μ),X2(μ),...,Xn(μ) be jointly Gaussian random variables with zero mean. If Xi(μ) and Xj(μ) are orthogonal for any i≠j, then X1(μ), X2(μ),...,Xn(μ) are mutually independent. (d) If X(μ,t) and Y(μ,t) are jointly Gaussian random processes, then aX(μ,t) + bY(μ,t) is a Gaussian process for arbitrary real constants a and b with ab≠0. (e) Consider the discrete-time random process S1(μ),S2(μ),S3(μ)...where Sn(μ) is defined by Sn(μ) = Σ Xi(μ) with X1(μ), X2(μ),X3(μ)... (i=1 to n) being independent and identical distributed Gaussian random variables which have zero mean and unit variance. It is true that S1(μ), S2(μ), S3(μ),...is a stationary random process. (f) Every white noise is a Marcov process (g) Let X(μ,t) be a Gaussian random process. If X(μ,t) has mean zero and autocorrelation function Rx(t1,t2) = sin^2(t1-t2)/(t1-t2)^2, then X(μ,t) is strict sense stationary. (h) Let X(μ,t) be a Gaussian random process with zero mean. If E[X(μ,t1)X(μ,t3)] + E[X(μ,t2)X(μ,t4)] = E[X(μ,t1)X(μ,t4)] + E[X(μ,t2)X(μ,t3)] for t1≦t2≦t3≦t4 then X(μ,t) is Marcov. 2. Consider the real-valued Gaussian random process X(μ,t) which have zero mean and autocorrelation Rx(t1,t2)= E(X(μ,t1)X(μ,t2))= 1+|t1|, t1≧t2 1+|t2|, t2≧t1 Answer the following question (a) Determine whether X(μ,t) is wide-sense stationary (b) Find the probability density function of Y(μ) = Σ(n=1 to N) X(μ,n) (c) Evaluate E[X(μ,-1) + X(μ,+1)]^4 3. Let X1(μ),X2(μ),...,Xn(μ) be independent and identical distributed (i.i.d) random variables with the common probability density function (p.d.f) fx(x)= 1/2δ(x+1) + 1/2δ(x-1), where δ(x) is Dirac function. Also let Y1(μ),Y2(μ),...,Yn(μ) be i.i.d Gaussian random variables with zero mean and unit variance. It is also given that Xi(μ) is independent of Yj(μ) for all i,j. Find the p.d.f and characteristic function of the random variable Σ(k=1 to n ) Xk(μ)Yk(μ) ~ 4. Define complex-valued Gaussian random variable Zn(μ) = Xn(μ)+jY(μ), n=1,2,..,N, where {Xn(μ),Yn(μ)}(n=1 to N) are jointly real-valued i.i.d. Gaussian random variables, which have zero mean and unit variance. ~ k ~ N ~* (a) Define Wk(μ) =[Π Zi(μ)]˙[Π Zm(μ)], k=1,2,...,N-1 (* denote i=1 m =k+1 ~ N ~* ~ N ~* the complex conjurate), W (μ) = Π Zm(μ) ,and W (μ)= Π Zi(μ). 0 m=1 N i=1 ~ If N=2, find E[Wk(μ)] for k=0,1,2,...,N (b) Find the characteristic function of a new random variable N ~ 2 V(μ) = Σ |Zn(μ)| n=1 5. Consider a linear and time-invariant system eith continus real input X(μ,t), continuous real output Y(μ,t), continuous real implues resopose h(t), and system H(ω). Let X(μ,t) and Y(μ,t) are both wide-sense stationary random processes with mean η_x and η_y,respectively, autocorrelation function Rx(τ) and Ry(τ), respectively. and power spetrum density Sx(ω) and Sy(ω),respectively. Also let h(t)=1 if |t|<1, and h(t)=0 otherwise. (a) It is known that η_y = α˙η_x with a constant α, Determine α (b) Express Ry(τ) in terms of Rx(τ). (c) Express Sy(ω) in terms of Sx(ω) 6. Cars arrive at a bridge entrance according to a Poisson process of rate λ=15 cars per minute. (a) Find the probability that in a given 4 minute period there are 3 cars arrivals during the first minute and 2 cars arrivals in the last minute. (b) Find the mean and variance od the time of the tenth cae arrival, given that the time of the fifth car arrival is T minutes (c) Assume that the bridge is long enough so that it can virtually accommodate an infinite number of cars. Further, let the time that each car stay on the bridge be independent ane exponetially destributed with mean μ=1 minute. Under this assumption the bridge can be modeled as an M/M/∞ queuing system. Find the mean number of cars on the bridge 7. Consider a discrete-time two-events hpmogeneous Markov chain Xk(μ), k=0,1,2,...,with the following statistical description: Pr(X0(μ)=1) = Pr(X0(μ)=2) = 1/2 Pr(Xn(μ)=1 | Xn-1(μ)=1) = Pr(Xn(μ)=2 | Xn-1(μ)=1) =1/2 Pr(Xn(μ)=2 | Xn(μ)=2) =1 Find the marginal distribution of the increment random variable Z1(μ) = X1(μ)-X0(μ) and Z2(μ) = X2(μ)-X1(μ), and check whether Z1(μ) and Z2(μ) are independent increment. What do you observe? --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.45.234.171







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:e-shopping站内搜寻

TOP