作者harveyhs (Hango)
看板NTU-Exam
標題[試題] 100-2 陳義裕 統計物理導論
時間Wed Apr 18 19:25:18 2012
課程名稱︰統計物理導論
課程性質︰系必修
課程教師︰陳義裕
開課學院:理學院
開課系所︰物理系
考試日期(年月日)︰April 11, 2012.
考試時限(分鐘): 180 mins
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
1. (This is from Carter's textbook.) A container is initially separated by
a diathermal wall into two compartments of equal volume. The left com-
-parment is filled with 1 kilomole of neon gas at a pressure of 4 atm
and the right with argon gas at 1 atm. The gases may be considered ideal.
The whole system is initially at temperature T=300K, and is thermally
insulated from the outside world. Suppose that the diathermal wall is
removed.
(a) (4 points) What is the new temperature of the system? The new pressure?
(b) (4 points) What is the change in the Gibbs function of the system?
(c) (8 points) What is the change in the entropy of the system?
2. (a) (5 points) Please describe in detail the third law of thermodynamics.
(b) (5 points) Please argue why the third law of thermodynamics implies
that it is impossible to reach absolute zero.
(c) (5 points) Please argue why the third law of thermodynamics implies
that the specific heat of a material tends to zero as T
approaches 0 K.
(d) (5 points) Please argue why the third law of thermodynamics implies
that the thermal expansivity of a material tends to zero
as T approaches 0 K.
3. Suppose the equation of state of a gas satisfies
(P+f(v))g(v)=RT,
where f(v) and g(v) are some differentiable functions of the molar volume
v of the gas.
(a) (6 points) Use a suitable Maxwell's relation to find (ðS/ðv)|
T
(b) (6 points) Find the most general form of the entropy S in terms of v
and T.
(c) (6 points) Setting T=0, argue that the value of S still depends on v
so that the third law of thermodynamics does not hold for
this system.
(d) (6 points) Does van der Waals gas obey the third law of thermodynamics?
Please explain.
4. The coefficient of viscosity η, the thermal conductivity κ, and the
diffusion constant D for a gas are defined by
shear stress = η(ðu_x/ðz)
heat flux = κ(ðT/ðz)
particle flux = D (ðρ/ðz),
where we have assumed that all macroscopic quantities involved, such as the
x-component u_x of the bulk velocity of the gas, the temperature T, and the
number density ρ only vary in the direction of z.
(a) (15 points) Please use the kinetic theory of gases to argue why, in
terms of order of magnitude,
_
η ~ mv/σ, (1)
_
κ ~ (c_v)*v/σ, (2)
_
D ~ v/ρσ. (3)
_
In the above , m, σand v denotes the mass, the cross sec-
-tion, and the mean speed of a gas particle, respectively,
whereas c_v denotes the isochoric specific heat per particle.
(b) (5 points) In the expressions above we see that the tranport coefficient
all vary with 1/σ, which means that a smaller particle
actually has a larger transport property, everything else
assumed equal! Please explain in physical terms why this
is to be expected.
(c) (5 points) A vacuum flask (or commonly called a thermos bottle) can
hold hot or cold food in the bottle for an extended period
of time. The flask has an inner bottle to fold the food,
and it is separated from the outer bottle by a thin space
in partial vacuum. The pressure inside this space may be
of order 10^(-6) Pa. It is usually said that the flask
insulates heat so well because of the presence of this
vacuum space. However Eqn. (2) above says that the thermal
conductivity actually is independent of the gas density!
So why does the flask work so well?
5. This problem concerns the phenomenon of effusion.
(a) (5 points) (This problem can take up quite some time! So be careful
with your time management.) Let b be a positive contant
(=m/2kT) and n≧0. Define
∫v^(n+2) exp(-bv^2)dv
g_n=--------------.
∫ v^n exp(-bv^2)dv
(v from 0 to infinity) Please show that g_3>g_2.
(b) (5 points) (You could still answer this question even if you did not
successfully finish part (a).) Use the result of (a) to
argue why, in effusion, the particles coming out of the tiny
hole of the chamber containing a gas at the temperature T
have an average kinetic energy that is greater than that
for the particles inside the chamber.
(c) (5 points) Please provide a physical explanation of why the effusion
can be used to separate isotopes.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.249.241
1F:推 jipq6175 :物理系學會學術部需要你 04/20 00:24