作者weisl (好倫~)
看板NTU-Exam
標題[試題] 99下 黃漢水 微積分甲下 第八次小考
時間Thu Jun 16 09:54:10 2011
課程名稱︰微積分甲下
課程性質︰必修
課程教師︰黃漢水
開課學院:工學院
開課系所︰土木工程學系
考試日期(年月日)︰100/06/14
考試時限(分鐘):40分鐘
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題:
→ → → →
一、Let F(x,y,z)= 2y cosz i + e^x sinz j + xe^y k and S is the hemisphere
x^2 + y^2 + z^2 = 16 , z≧0 , oriented upward. (30%)
→
Find the integral ∫∫ curl F‧dS. [Hint: use Stokes' Theorem]
S
→ → → →
二、Let F(x,y,z)= x^4 i - x^3 z^2 j + 4xy^2 z k and S is the surface
of the solid bounded by the cylinder x^2 + y^2 = 1 and the planes
z = x + 2 and z = 0, with outward orientation.
→
(1) Find div F . (10%)
→
(2) Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem]
S
→ → → →
三、Let F(x,y,z)= 2x^2 y i + 2xy^2 j + 4xyz k and S is the surface
of the tetrahedron bounded by the four plane x = 0, y = 0, z = 0
and x + 2y + z = 2, with outward orientation.
→
Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem] (30%)
S
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.4.191