作者weisl (好伦~)
看板NTU-Exam
标题[试题] 99下 黄汉水 微积分甲下 第八次小考
时间Thu Jun 16 09:54:10 2011
课程名称︰微积分甲下
课程性质︰必修
课程教师︰黄汉水
开课学院:工学院
开课系所︰土木工程学系
考试日期(年月日)︰100/06/14
考试时限(分钟):40分钟
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题:
→ → → →
一、Let F(x,y,z)= 2y cosz i + e^x sinz j + xe^y k and S is the hemisphere
x^2 + y^2 + z^2 = 16 , z≧0 , oriented upward. (30%)
→
Find the integral ∫∫ curl F‧dS. [Hint: use Stokes' Theorem]
S
→ → → →
二、Let F(x,y,z)= x^4 i - x^3 z^2 j + 4xy^2 z k and S is the surface
of the solid bounded by the cylinder x^2 + y^2 = 1 and the planes
z = x + 2 and z = 0, with outward orientation.
→
(1) Find div F . (10%)
→
(2) Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem]
S
→ → → →
三、Let F(x,y,z)= 2x^2 y i + 2xy^2 j + 4xyz k and S is the surface
of the tetrahedron bounded by the four plane x = 0, y = 0, z = 0
and x + 2y + z = 2, with outward orientation.
→
Find the integral ∫∫ F‧dS. [Hint: use Divergence Theorem] (30%)
S
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.4.191