Math 板


LINE

※ 引述《LPH66 ( )》之銘言: : ※ 引述《alan23273850 (God of Computer Science)》之銘言: : : 小弟今天正在練習這題 https://codeforces.com/problemset/problem/725/E : : 解答如下 https://codeforces.com/blog/entry/47974 (第 E 題) : : 題目是想用增加冗餘硬幣的方式證明 "貪心法 (優先取大) 取硬幣" 並不可行。 : : 舉例來說,從 S = {5,4,3} 可以湊出 12,可是 S' = {5,5,4,3} 就不行因為取了前面 : : 兩個 5 之後就剩 2,無法由剩下的 4 和 3 取出。而這題增加冗餘硬幣的最小額度恰好 : : 就是 5 (即 S' 的例子),題目想問每次增添冗餘硬幣的最小額度。 : : Q. 增加冗餘硬幣可以兩種幣值以上,每種幣值 (整數) 至少一枚,但標準解答卻說 : : 萬一滿足最小額度的解答有兩種幣值以上,它必定可以合成一種幣值,也是答案。 : : 換句話說,在找最小額度的時候總是可以假設只增添一種幣值,但枚數不限。 : : A. 其實解答和下面的討論區有附上證明,但是我看不懂!!所以想請問廣大資深鄉民 : : 可否幫忙指點迷津,讓小弟我稍微參透一下他們的想法? : : 至於要怎麼找幣值我應該可以自己頓悟,所以這部分可以先不需要,感謝感謝! : 他的邏輯是這樣的: : 如果被加入的硬幣最大的兩個的幣值是 x 和 y, x≧y : 當然這兩個硬幣會被選 (不然就不用加了) : 那把這兩個硬幣換成一個 x+y 的話 : (1) x+y 大於 x, 所以貪心法一定會比選 x 時更早選走 x+y : 那麼在新組合的貪心法的過程中, 到同樣硬幣時已選總錢數一定不少於原本的狀況 : 於是原本因為溢出不選的硬幣在新組合裡同樣也會因為溢出不選 : (2) 因為 x 和 y 包含在貪心法的選擇中 : 因此任意原組合中選中的硬幣加上 x 和 y 仍然小於目標 : 也就是說對於原本就選中的硬幣在新組合中同樣會因為小於目標而被選中 : 因此, 把加入的 x y 兩個硬幣換成 x+y 一個硬幣的話 : 貪心法一樣會在同樣的組合中失敗 (除了 x 和 y 換成 x+y 而已) : 重覆運用 (ie. 數學歸納法) 即可證明如果有個方法使用多個硬幣 : 則這些硬幣合成一個也是個方法 我再幫這篇貼文增補一張更平易近人的示意圖,以驗證我自己的理解! 在 X+Y 之前的硬幣因為組態沒有改變,所以選擇的組合也不會改變,這很自然。 .......______...●...●... implies f(A) + X + Y <= S A   X Y .......[●●]... since f(A) + X+Y <= S A X+Y 而因為上面不等式的成立,所以合併後的 X+Y 也應該要被選。 .......______○...●...●... A   B X Y .......[●●]○... A X+Y B 如果 X+Y 後方的第1顆硬幣B在X和Y合併之前沒被選,這隱含著 f(A) + B > S, 那麼合併之後的硬幣B也不能選,因為 f(A) + (X+Y) + B 必定也大於 S。 .......______●...●...●... A   B X Y .......[●●]●... A X+Y B 如果 X+Y 後方的第1顆硬幣B在X和Y合併之前已經被選,那麼本來就應該有: f(A) + B + X + Y <= S,而合併之後的不等式不變,所以也應該要選。 .......______B○...●...●... A    C X Y .......[●●]B○... A X+Y  C 如果 X+Y 後方的第2顆硬幣C在X和Y合併之前沒被選,則 f(A) + f(B) + C > S, 那麼合併之後的硬幣C也不能選,因為 f(A) + (X+Y) + f(B) + C 必定也大於 S。 .......______B●...●...●... A    C X Y .......[●●]B●... A X+Y  C 如果 X+Y 後方的第2顆硬幣C在X和Y合併之前已經被選,那麼本來就應該有: f(A) + f(B) + C + X + Y <= S,而合併之後的不等式不變,所以也應該要選。 按照此要領如法炮製,可以推得 X+Y 之前和之後的所有硬幣都維持不變的選擇, 所以也是一個會讓貪心法 fail 的答案,得證! --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.242.235.50 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/Math/M.1613474791.A.08C.html
1F:→ alan23273850: 這篇和上一篇最大的增補主要是強調順序性,一定要 02/16 19:30
2F:→ alan23273850: 前一顆硬幣維持相同的選擇之後我才能開始後面一顆的 02/16 19:30
3F:→ alan23273850: 推導,不然我不放心 02/16 19:30
※ 編輯: alan23273850 (111.242.235.50 臺灣), 02/16/2021 19:32:04
4F:推 LPH66 : 嗯, 順序性這個問題原題解裡沒有明提 02/17 02:05
5F:→ LPH66 : 是在 (1)(2) 兩個理由裡隱含了這回事 02/17 02:06
6F:→ LPH66 : 但題解強調 (1)(2) 的原因是因為, 每顆硬幣用的 02/17 02:06
7F:→ LPH66 : (1)(2) 推論都是一樣的 02/17 02:07
8F:→ alan23273850: 再次感謝大大,大大的閱讀能力真的比我好上許多, 02/17 07:30
9F:→ alan23273850: 我後來發現自己難以看懂該證明是因為我原本是減法 02/17 07:30
10F:→ alan23273850: 思維,就是已取硬幣扣掉目標還剩下多少,然後才繼 02/17 07:30
11F:→ alan23273850: 續看能不能拿下一個硬幣,但是這樣會讓每次迭代的 02/17 07:30
12F:→ alan23273850: 剩餘值都不同,導致式子難以證明,如果改成加法思 02/17 07:30
13F:→ alan23273850: 維的話每次的目標值都固定是 S,相較起來就方便許 02/17 07:30
14F:→ alan23273850: 多,由此可見證明技巧的重要性啊! 02/17 07:30
15F:→ alan23273850: 另外我在舉例的時候有發現到這種例子難以舉出,說 02/17 07:32
16F:→ alan23273850: 不定有興趣的板友也可以想想看怎麼舉出實例,或是 02/17 07:32
17F:→ alan23273850: 說明這種情況根本就不存在 02/17 07:32
18F:推 LPH66 : 符合證明的例子的話, 因為這證明不含最小性 02/17 13:08
19F:→ LPH66 : 因此舉例時可不用糾結在最小, 只要關係符合就行了 02/17 13:09







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Boy-Girl站內搜尋

TOP