Math 板


LINE

: → Arton0306 : 但C(N,N)題目有寫了,雖然我覺得題目雙重定義怪怪的 09/24 00:46 : → Arton0306 : 比較困擾的是這個證明架構 用了很強的假設 09/24 00:49 : 推 LPH66 : 關於你這個問題, 數學歸納法有所謂的「強形式」 09/24 02:39 : → LPH66 : 一般的歸納法是「P(n-1)→P(n)」 09/24 02:40 : → LPH66 : 強形式是「P(0)且P(1)且...且P(n-1)→P(n)」 09/24 02:40 : → LPH66 : 只要確定到你時前面的真的都成立那就行了 09/24 02:40 : → LPH66 : 其他都是一樣的 09/24 02:41 : 推 LPH66 : 事實上, 適當改寫問題即可將強形式轉為一般形式: 09/24 02:58 : → LPH66 : 令 Q(n) 為「P(0)且P(1)且...且P(n)」 09/24 02:58 : → LPH66 : 那強形式的推導就能寫成「Q(n-1)→Q(n)」 09/24 02:59 : → LPH66 : 以你的例子來說, (B)部份的結論可以再多走一步 09/24 03:00 : → LPH66 : 把前提跟結論合起來就能得到下一次的前提了 09/24 03:00 : → LPH66 : 這即是我上面寫的 Q(n) 09/24 03:01 : → Arton0306 : L大可以回文嗎XD 看不是很懂 要怎麼證才會都用到前 09/24 13:56 : → Arton0306 : 面已經確定成立的 09/24 13:56 其實有的時候對證明來說能用不只前一個結果會讓證明好寫很多 舉個最經典的: 費氏數列通式的證明 由於已知的是這一項跟前兩項有關係 所以在這裡使用強型式的歸納法證明會比較好寫 (雖然在這兩個例子裡都只用到前面一兩個而已) 而兩個型式的歸納法其實是一樣的, 因為兩者的差別只在於那個 n=k 跟 n≦k 而已 形式上雖然如我推文所說的可以如此改寫 但對實際證明來說, 就算這樣改寫最後出來的證明其實差不多 可以比較以下兩段: (一些證明) P(0), P(1), ... P(B) 皆成立。 若 P(n) 對 n≦k 成立, 則 (一些跟 P(k)、P(k-1)、... 有關的推理) 故 P(k+1) 成立。 由(強型式)數學歸納法得 P(n) 對自然數 n 成立。 ===================================================== 令 Q(n) 表示 P(0), P(1), ... P(n) 皆成立。 (一些證明) Q(B) 成立。 若 Q(n) 對 n = k 成立, 則 P(k)、P(k-1)、... 成立,(一些跟 P(k)、P(k-1)、... 有關的推理) 故 P(k+1) 成立;跟 Q(k) 成立合起來證得 Q(k+1) 成立。 由(普通)數學歸納法得 Q(n) 對自然數 n≧B 成立;於是 P(n) 對自然數 n 成立。 可以看到其實最後的證明除了一些跟 P Q 有關的細節之外都是一樣的 所以這種強型式的歸納法就放心用吧 題目做多了就知道條件越多能用的材料就越多, 也會比較好做 -- 'Oh, Harry, don't you see?' Hermione breathed. 'If she could have done one thing to make absolutely sure that every single person in this school will read your interview, it was banning it!' ---'Harry Potter and the order of the phoenix', P513 --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.30.46
※ 文章網址: http://webptt.com/m.aspx?n=bbs/Math/M.1411541902.A.905.html ※ 編輯: LPH66 (140.112.30.46), 09/24/2014 14:59:48
1F:推 Arton0306 : 感謝L大 再問一個問題 有沒有可能發生一個情況 09/25 00:25
2F:→ Arton0306 : 我用了一個錯誤的假設,卻證明出P(k+1)也成立了 09/25 00:25
3F:推 Arton0306 : 不能"用一個錯誤的假設 證出P(k+1)"應該也要證明@@ 09/25 00:36
你這個問題可以用一個著名的例子來說明: 「所有馬都是同色」的「證明」 這個「證明」是這樣的: 一隻馬當然同色 現在假設任何 N≦K 隻馬都是同色 將 K+1 隻馬它們編號 1 ~ K+1 那麼 1~K 一共 K 隻馬同色, 2~K+1 這 K 隻馬也同色 它們有共同的 2~K 這些馬, 所以這 K+1 隻馬也是同色 這個「證明」的錯誤在於「共同的 2~K 這些馬」這句話只在 K≧2 成立 所以這個歸納要成立基礎要證到 2 才行 但就是這個 N=2 的狀況不成立, 所以整個推理也就不對了 ※ 編輯: LPH66 (123.195.39.85), 09/25/2014 00:46:37
4F:推 Arton0306 : 這例子我知道 拿掉某一隻馬x 和另一隻馬y 剩下的集 09/25 00:45
5F:→ Arton0306 : 合不一定有交集 所以P(k)=>P(k+1)無法證明 09/25 00:47
6F:→ Arton0306 : 等等喔 我沒看到修文XD 09/25 00:48
7F:→ LPH66 : 因為要講的有點多所以直接修文XD 09/25 00:48
8F:推 Arton0306 : 這個例子我認為是 2~K可能為空集合 所以在inductive 09/25 00:54
9F:→ Arton0306 : 階段錯誤 是一個"假設錯誤 也無法證出P(k+1)"的例子 09/25 00:54
10F:→ Arton0306 : 但萬一有 假設錯 最後證出來怎麼辦xd 雖然我找不到 09/25 00:56
11F:→ LPH66 : 換個方式思考這個例子, 它的推論在 K≧2 時確實成立 09/25 01:06
12F:→ LPH66 : 所以 K=2 的狀況就是你所謂「假設錯但最後證出來」 09/25 01:06
13F:→ LPH66 : 這裡的「假設錯」就是 N=2 不成立這件事 09/25 01:07
14F:→ LPH66 : 你可以想像一個平行世界, 那裡任兩隻馬都確實同色 09/25 01:07
15F:→ LPH66 : 這樣根據這個推論我們就能得到那世界的所有馬都同色 09/25 01:08
16F:推 Arton0306 : 我記得以前修離散的時候考過一個題目 09/26 22:14
17F:→ Arton0306 : 也是要找數學歸納法中證明的錯誤 題型記得跟 09/26 22:15
18F:→ Arton0306 : min(x,y)有關 最後完成一個很神奇(是錯的)的結論 09/26 22:15
19F:→ Arton0306 : 不知道有沒有人知道題目 (希望有人看到這一篇) 09/26 22:16







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BuyTogether站內搜尋

TOP