作者CCWck (上吧上吧給我上吧)
看板Math
標題Re: [問題]積分 sinx / x...
時間Sat Feb 18 00:47:57 2006
sinx/x
=[sin(pi* x/pi) / pi* (x/pi)]
=sinc(x/pi)
取傅立葉轉換對(可查表)
F{sinc(x/pi)}=pi*rect(pi*f)
取f=0處 可知
∞
∫ sinx/x dx =pi
-∞
因為sinc函數為偶函數 所以
∞
∫ sinx/x dx =pi/2
0
※ 引述《gary27 (小龜)》之銘言:
: 我知道用laplase
: ∞
: ∫ sinx/x dx
: 0
: ∞
: L{sint/t}(s) = ∫ [sint/t * e^(-st) dt]
: 0
: dL/ds = -∫[sint * e^(-st) dt
: = -1/(1+s^2)
: L{sint/t}(s) =∫-1/(1+s^2) ds
: = - arctan(s) + C
: ∞
: ∫ sinx/x dx = L{sint/t}(0) = -arctan(0) + C
: 0
: = C
: 我的問題是...如果用這種方法,接下來要如何找出C就等於pi/2呢??
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.141.196
1F:推 gary27:我把三種方法都收到微積分區^^ 02/18 01:20
2F:推 s0904213:這一招真讚 ^^ 02/18 22:14
3F:推 Frobenius :解法整理:(已變更,三種方法分別為下列前三篇) 07/05 14:42
4F:→ Frobenius :gary27 (#13zVs5tJ) (Math) (Laplace) 07/05 14:43
5F:→ Frobenius :akrsw (#13zVXsBw) (Math) (Fubini) 07/05 14:43
6F:→ Frobenius :CCWck (#13zVs5tJ) (Math) (Fourier) 07/05 14:43
8F:→ Frobenius :FATTY2108 (#10kCopAy) (trans_math) 07/05 14:44
9F:→ Frobenius :FATTY2108 (#12wZFSca) (trans_math) 07/05 14:44
11F:推 Frobenius :相關問題: 07/05 14:48
12F:→ Frobenius :yhliu (#13zVXsBw) (Math) 07/05 14:48
13F:→ Frobenius :obelisk0114 (#1CHS4AzW) (Math) 07/05 14:48
14F:→ Frobenius :vincentflame(#1Ch9BxA9) (Math) 07/05 14:48
15F:→ Frobenius :olivegad (#10fxap0s) (trans_math) 07/05 14:49
16F:→ Frobenius :dolphin0111 (#17k0tYE7) (trans_math) 07/05 14:49
17F:→ Frobenius :bonsaixxx (#1Cd30_Oj) (Math) 07/05 14:49
18F:→ Frobenius :ntust661 (#1Cd58vZ4) (Math) 07/05 14:49
20F:推 Frobenius :RainIced (#1Dh_LHlx) (Math) 07/05 15:11
21F:→ Frobenius :penny93730 (#1D-Y806T) (Math) 07/05 15:11
22F:→ Frobenius :JohnMash (#1D-YSIKd) (Math) 07/05 15:11
23F:→ Frobenius :obelisk0114 (#1D-YshwE) (Math) 07/05 15:11
24F:→ Frobenius :justmeme (#1FnOy4Js) (Math) 07/05 15:11
25F:→ Frobenius :JohnMash (#1FnPA0lh) (Math) 07/05 15:11