作者darkseer (公假中)
看板IMO_Taiwan
標題Re: [問題] 一個印度朋友給我的組合題
時間Sun Aug 29 22:23:55 2004
※ 引述《chaogold (新扇不扇不擅訕新)》之銘言:
: ※ 引述《darkseer (公假中)》之銘言:
: : As title,
: : 給定一個n邊形,一個操作 = 把該n邊形對某一條邊做鏡射
: : 問是否對任意n邊形,都存在一個由n種操作所構成的無窮數列
: : 使得在將該n邊形依數列操作時該n邊形會跑遍整個平面
: : ------------------------------------------------------------------------------
: : 剛看到以為不難
: : 結果三角形的case我都弄不出來XD
: : 不過已經證出若在三角形成立則原命題成立
: 每一次操作的正n邊形是同一個?
: 鏡射出來的正n邊形是一直在的嗎?
我的表達實在不好XD
直接po原文好了
Let P be an n-gon , lying on a plane. We name its edges 1,2,3,..........n.
If S = s_1, s_2,.............. be a finite or infinite sequence such that for each i s_i is in {1,2........n}.
We move P in accordance with the sequence S such that we first reflect P through s_1
( the number s_i corresponds to the s_i th edge of the polygon P ) and then through s_2
and so on. Show the following holds :
a) Show that there exists a infinite sequence S such that if we move P according to S then
then we can cover the whole plane.
b) Prove that the sequence S is'nt periodic.
c) Assume that P is a regular pentagon with the radius of its circumcircle as 1 and let D be
another circle with radius 1.00001 lying in the plane arbitrary. Does there exist a sequence
S such that we move P accordingly then P reside in D completely.
原題中的(a)就是我問的
(b)(c)簡單的多(好奇怪的配置XD)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.143.120.134