作者cuttlefish (睡覺真是一種幸福呀~ I
看板IMO_Taiwan
標題Re: 從雲飄飄轉來的...放在這比較多人看~
時間Thu Sep 18 10:39:22 2003
※ 引述《cuttlefish (睡覺真是一種幸福呀~ I》之銘言:
第四題好像可以用這個不等式:
\
if a 為正實數
sqrt(a)>=2a/(a+1)
\
ps我只會這題啦~
有時間..寫詳細一點好了(我想大家應該早就會了....)
sqrt(a)>=2a/(a+1) 等號成立在 a=0 or 1
sqrt[x/(y+z)]>=2x/(x+y+z)
sqrt[y/(x+z)]>=2y/(x+y+z)
sqrt[z/(x+y)]>=2z/(x+y+z)
相加即可
注意到等號不能全成立
得證
※ 引述《chaogold (dchaodx)》之銘言:
: ※ 引述《myflame (龍隊 紅隊 太陽隊)》之銘言:
: : 感謝chaogold提供題目
: : 1. In triangle ABC prove that a + b + c < r_1 + r_2 + r_3 + min {r_1,r_2,r_3}
: : where r_1 is the exradius opposite a, r_2 is the exradius opposite b and r_3
: : is the exradius opposite c.
: : 2. How can you arrange numbers from 1 to 2003 in a row so that avg. of any
: : two numbers doesn't lie between them? E.g. 2003...1002...1 is invalid as
: : (1+2003)/2=1002
: : 3.Prove that there are infinitely many primes that can be written as the sum
: : of a prime and a power of two.
: : 4. [x/(y+z)]^(1/2) + [y/(x+z)]^(1/2) + [z/(y+x)]^(1/2) > 2
: 第二題學長的解法太妙了!
: 我只能說妙..
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.18.108
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.7.59
1F:→ JGU:咳~你沒事幹麻翹普物跑來計中電別人=.= 推 61.230.34.82 09/18
2F:→ cuttlefish:翹普物來計中是要看某消息(魔術社的).... 推140.112.249.199 09/20
3F:→ cuttlefish:而且我才電不到人呢~ 推140.112.249.199 09/20