Grad-ProbAsk 板


LINE

※ 引述《mdpming (+ 我不是豬 +)》之銘言: : ※ 引述《mdpming (+ 我不是豬 +)》之銘言: : : 1. : : 有人有周易工數課本 P 7-31 第一題嗎~ : : 這題該如何做呢?? : 這一題還是有請神人了.. : 沒有的話我晚一點po照片@@ 取Fourier cosine series(你取Fourier series結果也會一樣) 觀察圖形在0到π之前的函數為f(t)=(π/2) -t 無限 f(t)=a0+ S an*cosnt n=1 圖形週期2π 所以L=π 2(1-cosnπ) a0積出來會是0 , an積出來會是___________ πn^2 這個積分就靠你自己了@@ 另外如果你取的是全幅展開 a0,an同上,bn會是0 所以結果一樣 自己試試看吧 接著把an帶回原本的展開式 無限 2(1-cosnπ) f(t)= S ------------ cos(nt) n=1 πn^2 = 0, 當n=2,4,6,... 無限 4 S -----cosnt n=1,3,5 πn^2 就是這樣 : : 2. : : 2 : : f(x) = x , 0 < x < π : : 2 π 2 : : an = --- S x cosnx dx : : π 0 : : 如果取全幅及數 : : 2 π 2 : : an = --- S x cos2nx dx : : π 0 : : 這樣 答案不一樣也... : : 請問這是什麼情況 我都搞糊塗了 : : 3. : : 同上題 : : f(x) = x , 0 < x < π : : 取 sine series : : 2 π : : --- S xsinnx dx : : π 0 : : 那我也跟以跟上面一樣 取全幅級數 : : 2L = π : : π : : L = --- : : 2 : : 變成 : : 2 π : : --- S xsin2nx dx ?? : : π 0 : : 答案不一樣.. : : 有人能幫我解惑嗎.. : 我大概了解了 : 因為我看解答說 可以取 Fourier sine series : Fourier cosine series : 取 週期 π 全福及數 : 三種方法都可以 所以搞混了 : 要怎麼知道說 題目要你 求 半幅 還是 全幅? : 我又看了一變 不知道對不對 : 2 : f(x) = x , 0 < x < π : Find Fourier series : 這樣就是取全幅嗎? : (周易 筆記題目寫這樣 周易說 題目指定取全幅) : 全幅 就要全部展開 : 如果寫 : Find Fourier cosine series : 這樣就是取半幅嗎? 是的 但那是因為題目的函數只有定義0 < x < π的部分 所以你用Fourier series和Fourier cosine series展開的圖形會不一樣 像你問的第一題題目是把圖形畫出來了 定義了t在整個實數區間的圖形 而這個圖形剛好是個偶函數 所以可以取Fourier cosine series 即使你去取全幅展開結果也會一樣 因為bn會等於0 你可以把第一題取全幅看看就會發現這件事 若題目定義的圖形非奇或偶函數 就只能取全幅展開(或者你座標平移到變成奇或偶函數展開後再變回來) 重新釐清 我猜你又要搞混了XD 為什麼有時候取全幅跟取半幅會一樣(這次這題) 有時候又會不一樣(我上次回答你的那題) 基本上如果題目定義f(x)是對x在整個實數域定義的話 那麼你用全幅或半幅展開的結果會一樣 當然前提是題目的圖形要是奇或偶函數你才能半幅 圖形被固定了,週期也被固定了所以結果一樣 如果題目定義的只有一小段範圍 比如你這邊問的第二題 f(x) = x , 0 < x < π 在0到π之外完全沒定義 那你用全幅展開或半幅展開就會不一樣 因為在你沒定義的部分 兩種展開的圖形是不一樣的喔 首先週期就不一樣了 這種情況題目如果叫你取Fourier series就不能取半幅 如果叫你取Fourier sine series就不能取全幅 如果叫你取Fourier cosine series...不可能XDDD因為題目是奇函數 更正!! 可以!!但是和Fourier sine series答案會不同! 題目沒定義他是奇函數 我耍憨了... 你在慢慢體會吧XD --



※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.243.206 ※ 編輯: jasonkuo515 來自: 140.112.243.206 (11/01 13:41)
1F:推 mdpming:謝謝 有清楚一點點了~~ 11/01 13:57
2F:推 mdpming:第一題原來是這樣... 11/01 14:00
3F:→ QQkimi:推強者^^ 11/01 16:51
4F:→ jasonkuo515:我發現倒數第二行錯了!!可以取Fourier cosine series 11/01 23:35
5F:→ jasonkuo515:差點害到人@@ 11/01 23:35
※ 編輯: jasonkuo515 來自: 140.112.243.206 (11/01 23:48)
6F:推 mdpming:恩恩 我知道了 呵呵~~ 11/02 15:52







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BuyTogether站內搜尋

TOP