作者square690410 (阿隆)
看板Grad-ProbAsk
標題Re: [理工] 線代-Complex-valued
時間Sat Mar 21 22:38:40 2009
※ 引述《square690410 (阿隆)》之銘言:
: ※ 引述《thank1984 (thankakimo)》之銘言:
: : 題目:Let B be an arbitrary complex-valued m*n matrix,and let p(x) and q(x)
: : be respectively the characteristic polynomials of matrices BB^t and B^tB
: : , where B^T denotes the trqasposes of B. Find p(x)/q(x) in it's simplest
: : form.Show all your work clearly.
: : 問題: 請問各位大大 這題要怎麼做呢?? 小弟連題目都看不懂= = 很糟糕 煩請解答
: : 感謝
: B是一個任意的「複數矩陣」,令p(x)為B*B^T的特徵多項式
: q(x)為B^T*B的特徵多項式,求p(x)/q(x)為何??
若是複矩陣的話,那個應該是B^H才對..
用eigenvalue表現定理...
因為transpose不會改變原eigenvalue,所以BB^T與B^TB的
eigenvalue會一樣=>特徵多項式也會一樣,所以p(x)/q(x) = 1
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.124.113.121
1F:推 thank1984:喔喔 瞭解了 感謝S大解答 03/21 23:02
2F:→ ssccg:BB^t是m*m,B^tB是n*n,兩個eigenvalue應該差|m-n|個0 03/21 23:10
3F:→ ssccg:所以我覺得答案是 x^|m-n| 03/21 23:10
4F:→ ssccg: x^(m-n)才對 03/21 23:11
5F:→ square690410:嗯...我沒考慮到..樓上是對的... 03/21 23:18