作者moondark92 (明星黯月)
看板Economics
標題Re: [請益] (1)凸、凹函數判斷 (2)Kuhn-Tucker Theor
時間Mon Dec 3 23:20:28 2012
※ 引述《alwelcome (大太陽)》之銘言:
: (2)Kuhn-Tucker Theorem
看了這篇才搞懂題目
http://tinyurl.com/d3wmlt5
: Kuhn-Tucker Theorem 的陳述如下
: max F(x)
: st. G(x)<=0 , x>=0
: constraint qualification holds
: L(x,λ)=F(x)+λ[c-G(x)]
: _ _ _ _
: →Lx(x,λ)<=0 , x>=0 , xLx(x,λ)=0
: _ _ _
: →Lλ(x,λ)>=0 , λ>=0 , xLλ(x,λ)=0
^^^^^^^^^^^^ 此應為λLλ(x,λ)=0
: 今有一消費者面臨以下的效用極大問題:
: max ln(x)+ln(y+6)
: x,y
: s.t. px+qy<=4 , x,y>=0
: p,q:positive parameters
: L=ln(x)+ln(y+6)+λ(4-px-qy)
: (1)請寫出Kuhn-Tucker極大化條件
: (2)請說明λ>0
: (3)請說明x>0
Lx= 1/x-pλ,Ly= 1/(y+6)-qλ,Lλ=4-px-qy
: →Lx(x,λ)<=0 , x>=0 , xLx(x,λ)=0
1/x-pλ<=0, 1/(y+6)-qλ<=0, x>=0, y>=0, x(1/x-pλ)+y(1/(y+6)-qλ)=0
λ>=1/(px), x若=0則λ無限大, 則 x>0
λ>=1/(q(y+6))又q>0,y>=0,y+6>=6>0,1/(q(y+6))>0,
λ>0
: →Lλ(x,λ)>=0 , λ>=0 , λLλ(x,λ)=0
4-px-qy>=0, λ>=0, λ(4-px-qy)=0, 又λ>0 故 (4-px-qy)=0,
: (4)請說明y=0,並解出(x,y,λ)
因x>=0,(1/x-pλ)<=0則x(1/x-pλ)<=0
因y>=0,1/(y+6)-qλ<=0則y(1/(y+6)-qλ)<=0
二者皆<=0相加卻=0,故x(1/x-pλ)=y(1/(y+6)-qλ)=0
x=1/(pλ),
y(1/(y+6)-qλ)=0則 y=0或y=(1/(qλ)-6)
當y=0, x=4/p, λ=1/4
當y=(1/(qλ)-6), 4=1/λ+1/λ-6q, λ=1/(2+3q),
代回得 y=2/q-3, x=(2+3q)/p
y不等於0那個解不知怎否決
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.192.254.72
1F:推 alwelcome:這樣解y有兩組解沒錯,我想是否y不等於0時,沒有實際 12/04 00:00
2F:→ alwelcome:意思的關係,也就是沒有實際的物理含意。 12/04 00:01