DataScience 板


LINE

作業系統:win10 問題類別:YOLOv2 使用工具:python 問題內容: 不好意思,小妹最近在學習用YOLOv2來分類自己的圖檔,有幾點問題十分困惑,故想請問 各位大哥大姐,還懇請各位幫忙解惑了.. 1.訓練的時間要如何加速? 目前我是用dgx跑YOLOv2 資料圖檔約4千多,分了6個label。 epoch 先設1000想先跑看看,但過了一天epoch才40幾...因此,想詢問這是正常的嗎? (真的是我的天啊!我以為會一天內或幾小時內就跑好了 ......)還是說可能是一些pa rameter要修改? 因為我其實只是想先快速看到第一次的結果準確率為何而已...... 遇到此狀況,就不確定是否以後每次一改參數,就要等好幾天... 還是各位大大有什麼建議,能加速訓練的時間呢? 2.指標部分 我瀏覽了些應用的paper 發現主要都用mAP來去評估模型好壞 但卻看不到一些實作評估用confusion box 或單precision與recall等來評估 想請問為何yolo或RCnn等的模型評估都不太使用confusion box、precision、Top-5等 是因為label可能會很多所以不使用嗎? 還是其實也是可以使用?(只是很少人用之類的) 3.loss 最後一個問題,想請問大大們是否有些經驗法則 好比loss降到多少其實就差不多收斂了 或是可以透過什麼方式來看模型訓練差不多 (還是只能看準確率、mAP呢?) 不好意思...一次問題有點多.... 而且問題有點雞毛蒜皮超羞恥,不過這些問題困擾我頗久(止不住地一直思考啊啊啊啊啊 因此還懇請各位大大幫忙解答了 也謝謝各位願意看到這邊 小妹在此感恩不盡>< --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 223.137.143.225 (臺灣)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/DataScience/M.1585840625.A.3F9.html
1F:→ st1009: 我先說,我沒跑過YOLO,所以我說的可能有錯,不過我猜某些 04/03 00:07
2F:→ st1009: 東西ML應該是共同的吧,加速就看調大batch或者用更好的GPU 04/03 00:07
3F:→ st1009: ,如果只是測試可以考慮用小一點的Data,收斂也比較快。 04/03 00:07
4F:推 st1009: 2.我想是因為單個比較偏頗吧,但是如果目標符合還是能用 04/03 00:09
5F:推 st1009: 3.我是看lose沒有明顯變化就是收斂了 04/03 00:12
st大你好>< 好的!我會再試試看調整batch大小!loss部分..我一直在2.1至3.5徘迴,降不下去 我想我應該是要重整數據才會降下去了哈哈哈QQ謝謝你
6F:→ truehero: dgx一天才40epoch,該不會沒縮圖吧...? 04/03 00:22
t大你好><..請問縮圖的意思是input進去的圖要先重新resize再餵嗎?(我想說餵進去model後,就會先resize就沒先整理圖檔了QQ..)
7F:推 y956403: 1圖片太大張or沒使用GPU 3如果data夠多 可以切val set驗 04/03 02:30
8F:→ y956403: 證 overfit的時候停掉 04/03 02:30
m大你好>< 我圖片大多長寬600或700,我想應該同t大意思一樣,餵進去太大所以才跑很久,這個我會再修改謝謝你QQ
9F:推 littleyuan: mAP是拿來當objective metrics,模型出來後 你畫出 04/03 03:13
10F:→ littleyuan: confidence level和precision recall之間的關係 利 04/03 03:13
11F:→ littleyuan: 用你最想要的precision recall value來決定你的confid 04/03 03:13
12F:→ littleyuan: ence值 04/03 03:13
13F:推 littleyuan: 一個好的model precision recall都不能太低。mAP 值 04/03 03:16
14F:→ littleyuan: 高的話 代表你如果confidence level threshold 高prec 04/03 03:16
15F:→ littleyuan: ision 高 recall不會太低。 mAP值不高的話 妳precisio 04/03 03:16
16F:→ littleyuan: n 高時 recall就低 所以有tradeoff。最慘情況是recal 04/03 03:16
17F:→ littleyuan: l precision都很低 那這模型完全不能用。 04/03 03:16
18F:→ littleyuan: 所以當你mAP非常高的時候 你的recall precision都是 04/03 03:17
19F:→ littleyuan: 高的 是最好的情況 04/03 03:17
20F:推 littleyuan: 就類似ROC curve的概念 04/03 03:19
21F:推 littleyuan: 可以弄early stopping 04/03 03:21
22F:推 littleyuan: 我是用aws cloud computing比較不用煩惱效率問題 話 04/03 03:23
23F:→ littleyuan: 說我也是小妹哈哈 這行女的比soctware developer多些 04/03 03:23
24F:→ littleyuan: 歡迎加入DS 04/03 03:23
li大你好>< 超感動大家回我的!也謝謝妳回覆超詳細Q//Q 我其實還沒看到結果,是看很多實作文章,但沒怎麼用precision與recall, 所以我才再思考結果是否不會出現precision等指標,然後只會出現mAP,而我要自己反推precision這樣。 我想我還是先再重新數據,用小的epoch來看一次結果為何, 再來判定我到底要用什麼指標好了!不過您的回覆,讓我受益良多,增加很多概念!謝謝妳:) ※ 編輯: fangggggg87 (140.124.76.114 臺灣), 04/03/2020 11:37:19 ※ 編輯: fangggggg87 (140.124.76.114 臺灣), 04/03/2020 11:39:59 ※ 編輯: fangggggg87 (140.124.76.114 臺灣), 04/03/2020 11:42:03 ※ 編輯: fangggggg87 (140.124.76.114 臺灣), 04/03/2020 11:45:10
25F:推 Sfly: 700不算太大張,你大概是沒使用到gpu 04/03 20:24
26F:→ Sfly: 另外,看loss值不準,一定要用其他指標如recall來選模型 04/03 20:26
Sf大你好,我終於看懂了大家為啥說我gup沒使用了,原來語法上要自己加入 我以為電腦會自動使用哈哈哈哈哈QQ 目前使用了,速度快很多! 其他指標的部份...我想..應該也要自己加上語法讓它顯示出來的樣子 (原本也以為跑完就會出現精準度等等,所以就傻等了2天...哭..) 我會再研究看看怎加其他指標進去的~ 謝謝你:) ※ 編輯: fangggggg87 (140.124.76.106 臺灣), 04/04/2020 13:36:50 ※ 編輯: fangggggg87 (140.124.76.106 臺灣), 04/04/2020 13:39:34
27F:推 st1009: ctrl+y可以刪除多餘的綠色行,注意不要刪到推文就好 04/04 14:00
st大你好,拍謝..我弱弱的看不太懂綠色行的意思是什麼QQ...
28F:推 luluthejason: loss不同data 不同loss設計的話 彼此之間很難比較 04/05 15:56
29F:推 shhs1000246: loss觀察趨勢呀 每一種loss的計算方式不一樣要看定義 04/06 03:54
30F:→ shhs1000246: 還有yolo前面好像有加resize了不需要自己縮 04/06 03:54
31F:→ shhs1000246: 要看什麼時候停可以加validation看看mAP的狀況 04/06 03:56
32F:→ shhs1000246: 最後加速問題可以考慮用多張gpu 雖然4000多張感覺不 04/06 03:57
33F:→ shhs1000246: 是很多就是 04/06 03:57
ms大你好,好的!我有去查一下YOLO的loss function內容設計為何了, 一開始我也在納悶有resize那我還要縮嗎哈哈 結果是我沒叫出要用gup的指令才跑那麼慢(汗) 不過還是感恩你><
34F:推 sxy67230: 會用mAP主要是因為object detection 有兩個變因threshol 04/06 11:29
35F:→ sxy67230: d 會影響performance 結果,採用mean average 就是去計 04/06 11:29
36F:→ sxy67230: 算線下面積的平均,好處就是比較有公定基準來評估模型。 04/06 11:29
37F:→ sxy67230: 剩下我印象中蠻多網站都有評量方式,可以去看看怎麼實作 04/06 11:29
38F:→ sxy67230: 會比較了解我說的 04/06 11:29
sxy大你好,好的!這個部分我會再去多找找看變因有哪些,對這個領域剛接觸.. 弱弱的菜鳥,我加油QQ 謝謝你>< ※ 編輯: fangggggg87 (140.124.76.106 臺灣), 04/07/2020 21:49:18
39F:推 st1009: 綠色行就是編輯完之後出現的紀錄行,其實不刪也可以 04/07 21:57
40F:→ st1009: 我是在說PTT的功能 04/07 21:58
41F:→ fangggggg87: 好的 謝謝你xd 04/08 13:13
42F:推 sssh: 我自己train 七個類別,training data 三萬多張,大概train 04/13 21:46
43F:→ sssh: 個兩天 Loss 就可以收斂了,然後一般設計 YOLO ,大概都會 04/13 21:46
44F:→ sssh: 先偵測你是否有GPU,沒有的話才會用CPU train吧? 04/13 21:46
45F:→ sssh: Loss的部分,我用 darknet YOLOv2 tiny大概可以壓到0.0015 04/13 21:48
46F:→ sssh: 左右 04/13 21:48
47F:→ fangggggg87: sssh大你好!目前我應該是自用顯卡來跑,因為dgx所 04/20 14:04
48F:→ fangggggg87: 用的環境跟自己弄的不相容QQ 希望之後我增量上去也可 04/20 14:04
49F:→ fangggggg87: 以跑很快,謝謝你提供經驗讓我打了個強心針xd 04/20 14:04
50F:推 wargods8402: YOLOV2沒跑過,V3可以參照AlexeyAB修改後的,支援輸 04/28 00:30
51F:→ wargods8402: 出成折現圖,每個類別的mAP...等。需要修改Makefile 04/28 00:30
52F:→ wargods8402: 做訓練過程加速。有時候看到數值降到理想值了,不代 04/28 00:30
53F:→ wargods8402: 表結果會是最好的,訓練過程中會產出暫存檔,可以取 04/28 00:30
54F:→ wargods8402: 出來做測試看看。 04/28 00:30
55F:→ fangggggg87: wargods你好 我目前有成功跑出來了>< 只是loss值還 05/10 17:54
56F:→ fangggggg87: 很高,mAP不大理想QQ 我想我目前就是多改參數都跑看 05/10 17:54
57F:→ fangggggg87: 看吧...... 謝謝你的回覆,希望可以快快看到理想數 05/10 17:54







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:BabyMother站內搜尋

TOP