作者clansoda (小笨)
看板DataScience
標題[問題] 視覺辨識的幾個問題
時間Fri Feb 28 05:04:30 2020
各位前輩好,我最近在練習用pytorch來實踐最初的幾個架構
但是遇到了一些問題
1. 我知道類別上如果太過不平衡可能會導致模型學習上會出現問題,例如
癌症篩檢,假如癌症病人佔1%而健康的人佔99%,這樣的話如果用一般方法來訓練
模型應該都會分類成健康的人而檢測不出癌症病人。解法通常都是用權重化的
目標函數來解決。我現在的問題是假如我的類別只有一種,比如說狗,但是狗有三種型態
分別是正面圖,左面圖與右面圖。正面圖佔了80%而其他兩種佔了10%。這樣的話會
對分類造成影響嗎。他們的標籤都是狗只是圖片類型不一樣而已。
2. 我目前用了pytorch寫了alexnet與VGG系列的模型並用cifar10來做測試,想請問
訓練的時候error上上下下的是屬於正常的範疇嗎,他都會往比較低的方向跑但不是每
次更新都是往下跑而是上上下下反反覆覆。
3.承上題,我在搭VGG的時候發現19層的架構沒有辦法訓練而11層的可以,想請問是因為
cifar10的資料太小,用這麼深的架構沒有辦法訓練嗎。因為imagenet現在都不開放了
而我申請授權過了十幾天都沒有下文,不知道怎麼樣才能測試這些架構。
我在這邊放上我現在用的google colab希望有空的版友可以幫忙看一下我是不是
寫錯或者疏漏了什麼
https://reurl.cc/M7Yojp
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 73.189.185.80 (美國)
※ 文章網址: https://webptt.com/m.aspx?n=bbs/DataScience/M.1582837474.A.8C2.html
1F:→ y956403: 1標籤都是狗那你要分類的是什麼 不太懂 2趨勢是下降就正 02/28 08:47
2F:→ y956403: 常 3沒有辦法訓練是指什麼 梯度爆炸嗎 02/28 08:47
3F:→ clansoda: 應該說狗是其中一類label但是狗的訓練圖片又有三種方向 02/28 09:14
4F:→ clansoda: 但是我們的結果不需要知道是正面狗 右側的狗或左側的狗 02/28 09:14
5F:→ clansoda: 只需要知道是狗就好了,那這三種角度的狗的圖片比例不是 02/28 09:15
6F:→ clansoda: 1:1:1的話 對於結果會有負面的影響嗎 02/28 09:15
7F:→ clansoda: 感謝第二點的回答,第三點我知道為什麼了,我忘記加 02/28 09:15
8F:→ clansoda: optimizer.zero_grad了 導致前面的gradient一直累積到 02/28 09:16
9F:→ clansoda: 後面了 02/28 09:16
10F:推 tsoahans: 1.可能會影響可能不會 hard example mining或focal loss 02/28 10:31
11F:→ tsoahans: 就是用來解決這問題 正常的樣本有些很好分有些很難分 02/28 10:32
12F:推 tsoahans: 你要看看你的模型在三種角度下,分類的正確率有沒有差異 02/28 10:34
13F:→ tsoahans: 如果某個角度的狗分類正確率特別差,那再考慮變更權重 02/28 10:36
14F:→ clansoda: 感謝樓上的分享,我會查一下hard example mining 02/28 11:13
15F:→ clansoda: focal loss我在retinanet裡面看過,我會稍微研究一下 02/28 11:14
16F:→ neil2003tw: 1要看你要應用在什麼樣的data上面,model會忠實呈現你 02/28 16:05
17F:→ neil2003tw: 的訓練,如果正面照比例很高的話正面的acc就會比較好 02/28 16:06
18F:→ neil2003tw: 你可以刻意用不同正面側面背面比例的test data去驗證 02/28 16:07
19F:→ clansoda: 好的,我會在接下來的實驗上,特地測試稀少的類別 02/29 16:07
20F:→ clansoda: 感謝您的回答 02/29 16:07