DataScience 板


LINE

各位大大好~ 小弟學過DM的一些方法 正在嘗試Keras預測 目前遇到的問題是 我想用25個欄位去預測Y值 傳統Dm的方法是,將新的資料吃進訓練好的模型中,讓他預測新的Y 但在Keras裡,他預測出來的y是array形式 想請問這樣的話,我要如何將新的資料轉成訓練模型可吃的形式,謝謝! 以下是我的程式碼: import numpy import pandas as pd from sklearn import preprocessing numpy.random.seed(10) all_df = pd.read_csv("/Users/mac/Desktop/123.csv") cols=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10', 'x11','x12','x13','x14','x15','x16','x17','x18','x19', 'x20','x21','x22','x23','x24','x25'] #欄位名稱 all_df = all_df[cols] msk=numpy.random.rand(len(all_df)) < 0.8 train_df = all_df[msk] test_df=all_df[~msk] train_Features=all_df[['x1','x2','x3','x4','x5','x6','x7','x8','x9', 'x10','x11','x12','x13','x14','x15','x16','x17','x18','x19', 'x20','x21','x22','x23','x24','x25']] train_Label = all_df['x25'] test_Features=all_df[['x1','x2','x3','x4','x5', 'x6','x7','x8','x9','x10','x11','x12','x13','x14', 'x15','x16','x17','x18','x19','x20','x21','x22','x23','x24','x25']] test_Label = all_df['x25'] print(len(train_df)) print(len(test_df)) print(len(all_df)) from keras.models import Sequential from keras.layers import Dense,Dropout model = Sequential() model.add(Dense(units=40,input_dim=25, kernel_initializer= 'uniform', activation = 'relu')) model.add(Dense(units=30, kernel_initializer= 'uniform', activation = 'relu')) model.add(Dense(units=1, kernel_initializer= 'uniform', activation = 'sigmoid')) model.compile(loss='binary_crossentropy', optimizer = 'adam',metrics=['accuracy']) train_history = model.fit(x=train_Features, y=train_Label, validation_split=0.1, epochs=30, batch_size=30,verbose=2) train_history scores = model.evaluate(x=test_Features,y=test_Label) scores[1] 以下是我的模型結果: runfile('/Users/mac/.spyder-py3/temp.py', wdir='/Users/mac/.spyder-py3') 74 16 90 Train on 81 samples, validate on 9 samples Epoch 1/30 - 1s - loss: 0.6929 - acc: 0.4198 - val_loss: 0.6937 - val_acc: 0.1111 Epoch 2/30 - 0s - loss: 0.6902 - acc: 0.1852 - val_loss: 0.6944 - val_acc: 0.1111 Epoch 3/30 - 0s - loss: 0.6877 - acc: 0.1605 - val_loss: 0.6951 - val_acc: 0.1111 Epoch 4/30 - 0s - loss: 0.6851 - acc: 0.1605 - val_loss: 0.6957 - val_acc: 0.1111 Epoch 5/30 - 0s - loss: 0.6813 - acc: 0.1605 - val_loss: 0.6963 - val_acc: 0.1111 Epoch 6/30 - 0s - loss: 0.6767 - acc: 0.1852 - val_loss: 0.6970 - val_acc: 0.1111 Epoch 7/30 - 0s - loss: 0.6708 - acc: 0.2099 - val_loss: 0.6975 - val_acc: 0.1111 Epoch 8/30 - 0s - loss: 0.6628 - acc: 0.2222 - val_loss: 0.6979 - val_acc: 0.1111 Epoch 9/30 - 0s - loss: 0.6534 - acc: 0.3210 - val_loss: 0.6984 - val_acc: 0.1111 Epoch 10/30 - 0s - loss: 0.6397 - acc: 0.3580 - val_loss: 0.6986 - val_acc: 0.2222 Epoch 11/30 - 0s - loss: 0.6244 - acc: 0.4321 - val_loss: 0.6990 - val_acc: 0.2222 Epoch 12/30 - 0s - loss: 0.6039 - acc: 0.4815 - val_loss: 0.6990 - val_acc: 0.2222 Epoch 13/30 - 0s - loss: 0.5758 - acc: 0.5309 - val_loss: 0.6988 - val_acc: 0.2222 Epoch 14/30 - 0s - loss: 0.5467 - acc: 0.5432 - val_loss: 0.6990 - val_acc: 0.2222 Epoch 15/30 - 0s - loss: 0.5088 - acc: 0.5432 - val_loss: 0.6991 - val_acc: 0.2222 Epoch 16/30 - 0s - loss: 0.4600 - acc: 0.5432 - val_loss: 0.6986 - val_acc: 0.3333 Epoch 17/30 - 0s - loss: 0.4149 - acc: 0.5556 - val_loss: 0.6988 - val_acc: 0.3333 Epoch 18/30 - 0s - loss: 0.3513 - acc: 0.5679 - val_loss: 0.6993 - val_acc: 0.4444 Epoch 19/30 - 0s - loss: 0.2774 - acc: 0.5556 - val_loss: 0.6992 - val_acc: 0.4444 Epoch 20/30 - 0s - loss: 0.2010 - acc: 0.5556 - val_loss: 0.7004 - val_acc: 0.4444 Epoch 21/30 - 0s - loss: 0.1163 - acc: 0.5556 - val_loss: 0.7034 - val_acc: 0.4444 Epoch 22/30 - 0s - loss: 0.0139 - acc: 0.5556 - val_loss: 0.7056 - val_acc: 0.4444 Epoch 23/30 - 0s - loss: -8.1930e-02 - acc: 0.5679 - val_loss: 0.7121 - val_acc: 0.4444 Epoch 24/30 - 0s - loss: -1.9559e-01 - acc: 0.5679 - val_loss: 0.7214 - val_acc: 0.4444 Epoch 25/30 - 0s - loss: -3.2348e-01 - acc: 0.5679 - val_loss: 0.7327 - val_acc: 0.4444 Epoch 26/30 - 0s - loss: -4.4836e-01 - acc: 0.5802 - val_loss: 0.7467 - val_acc: 0.4444 Epoch 27/30 - 0s - loss: -5.7915e-01 - acc: 0.5802 - val_loss: 0.7694 - val_acc: 0.4444 Epoch 28/30 - 0s - loss: -7.3865e-01 - acc: 0.5802 - val_loss: 0.7944 - val_acc: 0.4444 Epoch 29/30 - 0s - loss: -8.9148e-01 - acc: 0.5802 - val_loss: 0.8236 - val_acc: 0.4444 Epoch 30/30 - 0s - loss: -1.0620e+00 - acc: 0.5802 - val_loss: 0.8666 - val_acc: 0.4444 90/90 [==============================] - 0s 49us/step --



※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 119.14.41.117
※ 文章網址: https://webptt.com/m.aspx?n=bbs/DataScience/M.1527783435.A.9A9.html
1F:推 HYDE1986: 你是模型已經train好,要用新的資料來進行預測嗎?06/01 09:18
2F:推 ax61316: 你的LSTM預測的結果長怎樣?能否秀出程式?06/01 11:02
3F:推 tsoahans: 你要做的事many-to-one還是many-to-many的預測?06/01 13:56
4F:→ tsoahans: 是06/01 13:57
※ 編輯: taylor0607 (27.246.68.149), 06/01/2018 15:04:55
5F:→ taylor0607: 好的 補上了 06/01 15:05
6F:→ taylor0607: 對 我想像DM一樣 預測出一個新欄位06/01 15:05
7F:→ taylor0607: 回t大 我是many to one 06/01 15:06
8F:→ Kazimir: 我怎麼沒看到LSTM在哪裡 你import 的不是Dense嗎06/01 16:42
※ 編輯: taylor0607 (27.246.68.149), 06/01/2018 17:04:09
9F:→ taylor0607: 啊抱歉 是Keras 06/01 17:04
10F:推 Kazimir: 你模型訓練時是怎樣測試就怎樣進去阿 scores沒東西嗎? 06/01 17:18
11F:→ tsoahans: 你要問的是怎麼predict test data嗎? 06/01 17:54
12F:推 HYDE1986: Keras直接用model.predict就可以了呀 官方文件有參數說 06/01 17:58
13F:→ HYDE1986: 明 06/01 17:58
14F:→ HYDE1986: 或是參考這篇 https://tinyurl.com/yc24oevc 06/01 17:58
15F:→ taylor0607: 好 謝謝~ 06/01 19:15







like.gif 您可能會有興趣的文章
icon.png[問題/行為] 貓晚上進房間會不會有憋尿問題
icon.pngRe: [閒聊] 選了錯誤的女孩成為魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一張
icon.png[心得] EMS高領長版毛衣.墨小樓MC1002
icon.png[分享] 丹龍隔熱紙GE55+33+22
icon.png[問題] 清洗洗衣機
icon.png[尋物] 窗台下的空間
icon.png[閒聊] 双極の女神1 木魔爵
icon.png[售車] 新竹 1997 march 1297cc 白色 四門
icon.png[討論] 能從照片感受到攝影者心情嗎
icon.png[狂賀] 賀賀賀賀 賀!島村卯月!總選舉NO.1
icon.png[難過] 羨慕白皮膚的女生
icon.png閱讀文章
icon.png[黑特]
icon.png[問題] SBK S1安裝於安全帽位置
icon.png[分享] 舊woo100絕版開箱!!
icon.pngRe: [無言] 關於小包衛生紙
icon.png[開箱] E5-2683V3 RX480Strix 快睿C1 簡單測試
icon.png[心得] 蒼の海賊龍 地獄 執行者16PT
icon.png[售車] 1999年Virage iO 1.8EXi
icon.png[心得] 挑戰33 LV10 獅子座pt solo
icon.png[閒聊] 手把手教你不被桶之新手主購教學
icon.png[分享] Civic Type R 量產版官方照無預警流出
icon.png[售車] Golf 4 2.0 銀色 自排
icon.png[出售] Graco提籃汽座(有底座)2000元誠可議
icon.png[問題] 請問補牙材質掉了還能再補嗎?(台中半年內
icon.png[問題] 44th 單曲 生寫竟然都給重複的啊啊!
icon.png[心得] 華南紅卡/icash 核卡
icon.png[問題] 拔牙矯正這樣正常嗎
icon.png[贈送] 老莫高業 初業 102年版
icon.png[情報] 三大行動支付 本季掀戰火
icon.png[寶寶] 博客來Amos水蠟筆5/1特價五折
icon.pngRe: [心得] 新鮮人一些面試分享
icon.png[心得] 蒼の海賊龍 地獄 麒麟25PT
icon.pngRe: [閒聊] (君の名は。雷慎入) 君名二創漫畫翻譯
icon.pngRe: [閒聊] OGN中場影片:失蹤人口局 (英文字幕)
icon.png[問題] 台灣大哥大4G訊號差
icon.png[出售] [全國]全新千尋侘草LED燈, 水草

請輸入看板名稱,例如:Boy-Girl站內搜尋

TOP