作者LuisSantos (但愿真的能够实现愿望)
看板trans_math
标题Re: [向量] 向量场
时间Fri Jun 20 17:48:28 2014
※ 引述《sx4152 (呵呵)》之铭言:
: 题目:
: -> ^ ^ ^
: (a) show that vector F = (y^2 cosx +z^3)i +(2ysinx-4)j+(3xz^2 +2)k is a
: conservative field
: ->
: (b) find the scalar potential function for F
: 第一小题只要看F的旋度是否是零就可以证了
: 第二小题要怎麽算呢?
→
(b) 令 ▽G = F
δG
则 ----- = (y^2)(cosx) + z^3 ------(1)
δx
δG
----- = (2y)(sinx) - 4 ------(2)
δy
δG
----- = (3)(x)(z^2) + 2 ------(3)
δz
由(1)
G(x,y,z) = (y^2)(sinx) + (x)(z^3) + f(y,z)
δG δf
----- = (2y)(sinx) + ----- 对照(2)
δy δy
δf
----- = -4 => f(y,z) = -4y + h(z)
δy
∴ G(x,y,z) = (y^2)(sinx) + (x)(z^3) - 4y + h(z)
δG
=> ----- = (3)(x)(z^2) + h'(z) 对照(3)
δz
(3)(x)(z^2) + h'(z) = (3)(x)(z^2) + 2
=> h'(z) = 2 => h(z) = 2z + c
∴ G(x,y,z) = (y^2)(sinx) + (x)(z^3) - 4y + 2z + c
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 114.24.193.165
※ 文章网址: http://webptt.com/cn.aspx?n=bbs/trans_math/M.1403257711.A.C4C.html
1F:推 sx4152 :谢谢 很清楚明了! 06/20 19:26