作者suhorng ( )
看板trans_math
标题Re: [多变] 两题多变数函数的极限
时间Sun Apr 15 11:30:17 2012
※ 引述《yoyooyooo (yoyoyoo)》之铭言:
: http://imgur.com/LLbEI
: 如图
: 两题解到一半都卡卡的
1.
tanθ
lim ------ = 1
θ→0 θ
tan(x - y)
So lim ------------ = 1 as x - y can be made arbitrary small if
(x,y)→(2,2) x - y (x,y) is close enough to (2,2)
(*) Another possible answer
tan(x - y)
lim ------------ doesn't exist since the function is not defined
(x,y)→(2,2) x - y in any neighborhood of (2,2) along the line x=y.
It depends on the definition of the limit.
2.
x^3 - xy^2 r^3 cosθcos(2θ)
By writing ----------- in polar form we get -------------------
x^2 + y^2 r^2
which is r cosθcos(2θ) when (x,y)≠(0,0) and its absolute value is
less than r. So the limit is
-1 π
cos 0 = ---
2
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.217.35.77
※ 编辑: suhorng 来自: 61.217.35.77 (04/15 11:39)
1F:→ yoyooyooo:第二题的arccos(0)可以等於3π/2吗140.113.188.253 04/15 11:58
2F:→ yoyooyooo:可以的话此极限是不是就不存在了?140.113.188.253 04/15 11:59
3F:→ suhorng:arccos端看你怎麽定义 通常会定义在[0,π] 61.217.35.77 04/15 12:25
4F:推 yoyooyooo:谢谢你!140.113.188.253 04/15 13:09