作者addoil (全民乱讲之全民大闷锅)
看板historia
标题Re: [发问] 古代的数学
时间Wed Apr 11 14:43:48 2007
※ 引述《xz1895 (XZ)》之铭言:
: 古代的中国没有阿拉伯数字
: 记得数学课本上提过古代的名数学家,将圆周率角度算到第七位的祖冲之
: 他们是如何计算的?
: (直接写..一加一等於二...?!)
: 或是说古代有数学的概念吗?
感觉这问题似乎应该到数学板去问
不过在这里我还是解答一下好了
首先
一个概念必须澄清
你在学校所学到的计数方法(阿拉伯数字计数法)与四则运算符号"+-*/"这些东西
都是到了17世纪才在欧洲被广泛的使用
(当然 阿拉伯数字更早一点 大概15世纪在欧洲被广泛使用 )
古代的数字运算是非常复杂的
比方说 7*5+2*6-(9/3)这种问题就连国小生都会
可是这问题要是放在古代欧洲
绝大多数能解出来的都是数学家
(恩 如果用当时的欧洲话来说 或许我该称呼为哲学家或博学家 )
除了因为古代教育不普及以外
计算的麻烦与复杂也是让人为之怯步的重要因素
这一点不管是古代的中国或是欧洲都是一样的
古代的计算方法多采取大量文字来辅助
欧洲则多采用罗马数字加语言说明
中国则有自己的计数系统
祖冲之计算的方法是承袭自刘徽的割圆法
这套计算方法大家在国中数学应该都有算过
我就不再多提割圆法了
不过这里既然是历史板
讲点史料或许比较好
我在google稍微爬了一下
找到了刘徽当时计算圆周率的那段史料
「割六觚以为十二觚,术曰:置圆径二尺,半之为一尺,即圆里觚之面也。令半径一尺
为弦,半面五寸为句,为之求股。以句幂二十五寸减弦幂,余七十五寸,开方除之下至
秒忽,又一退法,求其微数。微数无名,知以为分子,以下为分母,约作五分忽之二,
故得股八寸六分六厘二秒五忽五分忽之二。以减半径,余一寸三分三厘九毫七秒四忽五
分忽之三,谓之小句。觚之半面,又谓之小股,为之求弦。其幂二千六百七十九亿四千
九百一十九万三千四百四十五忽,余忽弃之。开方除之,节十二觚之一面也。」
上面这一串又臭又长的文字用八个字来说明就是"用割圆法求圆周率"
恩 另外再提供一条比较简单的数学题目来说明古代中国数学家是如何作运算的
今 有 圆 田 , 周 三 十 步 , 径 十 步 。 问 为 田 几 何?
荅 曰 : 七 十 五 步 。
------取自<九章算数>
上面这段文字用现代数学来翻译
周指的就是圆周长;径指的就是直径;田几何就是问你面积多少
步指的就是单位长
用现代数学来做一下简单的计算
1步我用1公尺来替代
圆周率 = (圆周长/直径)
圆周率 =30/10 =3
圆面积 = 3*(5*5) =75
这样答案就跑出来了
--
I found you in my bed!
How’d you whined up there?
You are a mystery!
Little black curly hair!
Little black curly hair!
Little black, little black, little black,little black, little black curly hair.
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.114.206.117
※ 编辑: addoil 来自: 140.114.206.117 (04/11 14:46)
※ 编辑: addoil 来自: 140.114.206.117 (04/11 14:53)