Physics 板


LINE

※ 引述《dinks (丁克思)》之铭言: : 题目及我解到後面卡住的内容如下。 : 本题正解是(D),但可怜的我算不出来 QQ : 【出处】普物 : 【题目】 : https://i.imgur.com/GF4PuRQ.jpg
: 【瓶颈】下面是我的解法,算到後面发现M的动能居然是负的,我就知道我一定有什麽观 : 念是错的,所以整个卡死。还望先进指点,感恩。 : https://i.imgur.com/7M72kVE.jpg
You should deal with this problem more carefully due to the fact that the mechanical energy is not conserved since the normal force would do the work during the process. Before entering the derivation, the mass is used to label these two objects. Some notations are introdueced and defined as follows: t: time. N(t): the normal force between these two objects. v_x(t): the horizontal component for the obejct m's velocity. v_y(t): the vertical component for the object m's velocity. \theta(t): the polar angle respect ot the vertical direction for the object m. V_x(t): the horizontal component for the object M's velocity. Above quantities are functions of time. Assume when the moment t=\tau, the object m will leave from the object M. At first, in the lab frame, the linear momentum is conserved along the horizontal direction. It gives the following relation: mv_x(t) = MV_x(t), for all 0<t<\tau -------------------------------(1) On the other hand, apply work-kinetic energy theorem on object M, it follows: \int^{\tau}_{0} N(t)sin(\theta(t))V_x(t)dt = M(V_x(\tau))^2/2------(2) where \int^{\tau}_{0} is the intetgration on the interval [0,\tau]. Similarly, apply work-kinetic energy theorem on object m, it arrives that: m[(v_x(\tau))^2+(v_y(\tau))^2]/2 = mgR(1-cos(\theta(\tau)) ) + \int^{\tau}_{0} N(t)sin(\theta(t))v_x(t)dt - \int^{\tau}_{0} N(t)cos(\theta(t))v_y(t)dt -------(3) where g is the gravitational accelaration and R is the radius of the object M. Now the rest frame in which the object M is in the rest is considered to connect v_x(t), v_y(t), \theta(t) and gR. In this frame, the object m moves along the surface of the object M. Hence, v_x(t), v_y(t), and \theta(t) have the following relation: v_y(t)/[v_x(t)+V_x(t)] = tan(\theta(t)) for all o<t<\tau----------(4) It is noted that the horizontal component for the object's velocity in this rest frame becomes v_x(t) + V_x(t). Finally, at the moment t = \tau, the normal force becomes zero and only the gravity provides the centripetal force which gives the following equality: (v_y(\tau))^2 + [v_x(\tau) + V_x(\tau)]^2 = gRcos(\theta(\tau))-------(5). In the end, Combing Equs. (1) to (5) and applying some caculation, it arrives: [(1+m/M)tan^2(\theta(\tau))+1]cos^3(\theta(\tau)) = 2[1 - cos(\theta(\tau))](1+m/M) -----(6) Substitute the fact cos(\theta(\tau)) = 0.7 into Equ. (6), the ratio M/m can be solved uniquely and it is about 2.43 Q.E.D. --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 42.73.254.77 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Physics/M.1706583644.A.225.html
1F:→ dinks: Thanks for your help. 01/31 15:28







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Soft_Job站内搜寻

TOP