作者xavier13540 (柊 四千)
看板NTU-Exam
标题[试题] 105-1 薛克民 数值线性代数 期末考
时间Sun Apr 13 12:43:43 2025
课程名称︰数值线性代数
课程性质︰数学系选修
课程教师︰薛克民
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2017/01/10
考试时限(分钟):110
试题 :
Instructions:
● Total points 100
● Open books, notes, and laptop
● Answer the questions thoroughly and justify all your answers
1. (35 points) Given an arbitrary 2×2 real symmetric matrix written in the form
\[A = \begin{bmatrix}
w+z & \varepsilon\\
\varepsilon & z
\end{bmatrix}.\]
(a) (25 points) Perform the following shifted QR step:
\[A-zI = QR, \bar A = RQ+zI.\]
Show that
\[\bar A = \begin{bmatrix}
\bar x+\bar z & \bar\varepsilon\\
\bar\varepsilon & \bar z
\end{bmatrix},\]
where
\[
\bar z = z - \frac{\varepsilon^2w}{w^2+\varepsilon^2},
\bar w = w + 2\frac{\varepsilon^2w}{w^2+\varepsilon^2},
\bar\varepsilon = \frac{\varepsilon^3}{w^2+\varepsilon^3}.
\]
(b) (10 points) What does the result shown in (a) tell you about the conver-
gence of the QR-iteration for this type of matrix?
2. (20 points) Let $A \in \mathbf C^{m\times m}$, $x \in \mathbf C^m$, and $X =
\begin{bmatrix}x, Ax, \ldots, A^{m-1}x\end{bmatrix}$. If X is nonsingular,
show that $X^{-1}AX$ is an upper Hessenberg matrix.
3. (45 points) Let $A \in \mathbf R^{m\times m}$ be symmetric, $T_n = Q_n^TAQ_n
\in \mathbf R^{n\times n}$ be the projection of A onto the Krylov subspace
$\mathcal K_n$ (computed via Lanczos algorithm), and $r_n = b - Ax_n \in
\mathbf R^m$ be the residual where $x_n \in \mathcal K_n$ gives an approxi-
mate solution of Ax = b at the iteration step n. Assume that A is positive
definite also, i.e., $\langle v, Av\rangle = v^TAv > 0$, for any vector v and
$T_n$ is nonsingular.
(a) (15 points) Show that $x_n = Q_nT_n^{-1}e_1\|b\|_2$ minimizes
$\|r_n\|^2_{A^{-1}} = r_n^TA^{-1}r_n$, where $e_1 = \begin{bmatrix}1, 0,
\ldots, 0\end{bmatrix}$ is an n×1 vector.
(b) (15 points) Show that the minimization of $\|r_n\|_{A^{-1}}$ in (a) is
equivalent to minimizing the error in A-norm, i.e., $\|x-x_n\|_A$.
(c) (15 points) Show that $Q_n^Tr_n = 0$.
--
第01话 似乎在课堂上听过的样子 第02话 那真是太令人绝望了
第03话 已经没什麽好期望了 第04话 被当、21都是存在的
第05话 怎麽可能会all pass 第06话 这考卷绝对有问题啊
第07话 你能面对真正的分数吗 第08话 我,真是个笨蛋
第09话 这样成绩,教授绝不会让我过的 第10话 再也不依靠考古题
第11话 最後留下的补考 第12话 我最爱的学分
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 36.230.52.204 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTU-Exam/M.1744519426.A.9A0.html