作者impin (pin)
看板NTU-Exam
标题[试题] 99下 王金龙 微积分甲下 第六次小考
时间Wed Jun 8 15:55:47 2011
课程名称︰微积分甲下
课程性质︰必修
课程教师︰王金龙
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2011/05/26
考试时限(分钟):40
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
A. Determine whether the improper integral
2 2 2 2
∫∫∫ (dxdydz)/(1+ x + y + z ) converges or diverges.
R^3
If it converges, evaluate the integral.
B. Find the area of surface r(r,θ)=(rcosθ,rsinθ,θ)
with 0≦r≦1 and 0≦θ≦2π.
C. Find the volume of the n-simplex described by x ≧0 for k = 1,2,...,n
k
and (x /a )+(x /a )+...+(x /a )≦1.
1 1 2 2 n n
D.
∞ -tx
(a) Evaluate the improper integral ∫ e cos(x) dx for any fixed t > 0.
0
(b) Show that the integral in (a) converges uniformly in t > c > 0.
∞ -bx -ax
(c) Evaluate the integral ∫ ((e - e )/x)cos(x)dx for given a > b > 0.
0
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.240.100
1F:推 iamwjy :D(b) converges 06/08 22:23
2F:→ impin :sorry 06/08 22:29
※ 编辑: impin 来自: 140.112.240.100 (06/08 22:29)