作者BaiYe (摆耶)
看板NTU-Exam
标题[试题] 99下 陈俊全 高等微积分二 期中考
时间Sun May 1 19:38:12 2011
课程名称︰高等微积分二
课程性质︰数学系必修
课程教师︰陈俊全
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2011/4/26
考试时限(分钟):170分
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
Choose 5 from the following 6 problems
1. Discuss the pointwise convergence and uniform convergence of
x
(a) fn(x) = ─────── , 0 < x < ∞
1 + n^2 x^2
n x
(b) gn(x) = Σ ─────── , 0 < x < ∞
k=1 1 + k^2 x^2
2. Suppose {fn} is an equicontinuous sequence of functions from a compact
set A to R(实数), and {fn} converges pointwise on A. Prove that {fn}
converges uniformly on A.
3. Let f: [0,1] → R(实数) be continuous.
1
(a) Assume ∫ f(x) x^k dx = 0 for k = 0,1,2,...
0
Prove that f(x) = 0 on [0,1]
(b) Assume f(0) = f(1) = 0. Prove that there are polynomials Pn such that
sup |f(x) - x(1-x)Pn(x)| → 0 as n → ∞
x属於[0,1]
∞ ∞
4. Prove that Σ a_k = A(C,1) implies Σ a_k = A(Abel).
k=0 k=0
5.
(a) What is the contraction mapping principle?
(b) Let A = {(x,y)| 0≦x≦1, 0≦y≦1}, k(x,y) : A→R(实数) be continuous,
and a(x) : [0,1]→R(实数) be continuous. Assume |k(x,y)| < 1 for each
(x,y) 属於 A. Prove that there is a unique continuous real-valued
function f(x) on [0,1] such that
1
f(x) = a(x) + ∫ k(x,y) f(y) dy.
0
6. Let f : R^2(实数^2)→R^3(实数^3) be defined by
f(x,y) = (x^3 y, g(x,y), x^4 y^2). Assume f is differentiable at (1,2).
(a) Prove that g(x,y) is continuous at (1,2).
dg dg
(b) Assume further that ─(1,2) = 5 and ─(1,2) = 1. (partial不好打 用d代替)
dx dy
Compute Df(1,2).
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.248.245