作者wallowes (Qoo)
看板Math
标题Re: [其他] PDE
时间Sun Mar 9 21:49:29 2025
※ 引述《semmy214 (黄小六)》之铭言:
: https://imgur.com/a/5gdBShZ
: 想请教下这题
令T(x,t)=U(x)+V(x,t) 将稳态跟动态分开
先考虑稳态的部分,
原式变成0=4 partial^2 T/partial x^2
因为稳态时间不变,且V(x,t)在稳态时=0
-> T(x,t)=U(x)
-> 0=4 partial^2 U/partial x^2
-> d^2 U/dx^2=0
-> U(x)=ax+b
-> U'(x)=a
代入两个边界条件
U(0)=b=0
U'(1)=a=1
-> U(x)=x
-> T(x,t)=x+V(x,t)
考虑新的边界条件
T(0,t)= 0+V(0,t)=0 -> V(0,t)=0
partial T(1,t)/partial x = 1+partial V(1,t)/partial x=1
->partial V(1,t)/partial x=0
将两个边界条件都化为0
回到原本问题
partial T(x,t)/partial t = partial V(x,t)/partial t
partial^2 T(x,t)/partial x^2 = partial^2 V(x,t)/partial x^2
所以 partial V(x,t)/partial t = 4 partial^2 V(x,t)/partial x^2
-> Z(x)R'(t)=4Z''(x)R(t)
-> R'(t)/4R(t)=Z''(x)/Z(x)=λ
先算Z(x)
Z''(x)-λZ(x)=0
特徵方程式
α^2-λ=0
令λ=-(β^2) 找共轭虚根
α=+-βi
-> Z(x)= C1 cos βx+C2 sin βx
代入边界条件
Z(0)=C1=0
->Z(x)=C2 sin βx
->Z'(x)=βC2 cos βx
代入边界条件
Z'(1)=βC2 cos β=0
因为βC2不能等於0
所以cos β=0
-> β= (2n-1)π/2 (n = 1、2、3、4...)
-> Zn(x)=C2n sin (2n-1)π/2 x
[其实题目只要算到这就好Eigenfunction]
->λ=-[(2n-1)π/2]^2
[Eigenvalue]
再来算R(t):
R'(t)-4λR(t)=0
特徵方程式
α-4λ=0
->α+[(2n-1)π]^2=0
->α= -[(2n-1)π]^2
Rn(t)= d1n e^-[(2n-1)π]^2 t
Vn(x,t)=Zn(x)Rn(t)= An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x (An= d1n*C2n)
因为原方程式是线性方程式,利用重叠定理
V(x,t)=sigma [n=1->∞]Vn(x,t)
=sigma [n=1->∞] An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x
考虑新的初始条件:
T(x,0)=2=x+V(x,0)
->V(x,0)= 2-x = sigma [n=1->∞] An * sin (2n-1)π/2 x
[这边视为用傅立叶sin级数展开,所以(2-x)会被视为奇函数]
积分 [-1->1] (2-x)* sin (2n-1)π/2 x dx = An
->An = 2* 积分 [0->1] (2-x)* sin (2n-1)π/2 x dx
= 8/[(2n-1)π]^2 * (-1)^n + 8/[(2n-1)π]
所以V(x,t)=sigma [n=1->∞] An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x
T(x,t)= x+V(x,t)
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 203.204.210.81 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/Math/M.1741528171.A.703.html
※ 编辑: wallowes (203.204.210.81 台湾), 04/20/2025 00:11:05